Migrating from DAO to ADO

Using ADO with the Jet Provider
Alyssa Henry, March 1999
Elaborado por Marcelo S. Pereira (marcelsp@mandic.com.br)

Introduction
(The information in this section is preliminary documentation, incomplete, and subject to change.)

This document is designed as a guide to performing common Microsoft® Data Access Objects (DAO) programming tasks with equivalent Microsoft ActiveX® Data Objects (ADO) code. It details the mapping between DAO and ADO objects, properties, and methods. It also highlights areas where there are functional or semantic differences between similarly-named methods or properties.

This document is also a guide for those who are writing new applications using ADO with the OLE DB Provider for Microsoft Jet (Jet Provider). It describes many features of the Jet Provider and demonstrates how to use them with ADO. Because the ADO documentation was designed to be provider-neutral, it lacks much of this information.

This document does not attempt to provide in-depth detail on particular objects, properties, or methods. Refer to the online documentation provided with DAO and ADO for specific details on a particular item.

Three distinct object models in ADO together provide the functionality found in DAO. These three models are ADO, Microsoft ADO Extensions for DDL and Security (ADOX), and Microsoft Jet and Replication Objects (JRO). The functionality of DAO was divided among these three models because many applications will need just one of these subsets of functionality. By splitting the functionality out, applications do not need to incur the overhead of loading additional information into memory unnecessarily. The following sections provide an overview of these three object models.

ADO: Data Manipulation

[image: image1.jpg]
ADO enables your client applications to access and manipulate data through any OLE DB provider. ADO contains objects for connecting to a data source and reading, adding, updating, or deleting data.

ADOX: Data Definition and Security
The ADOX model contains objects for data definition (such as tables, views, and indexes) and creating and modifying users and groups. With ADOX, an administrator can control database schema and grant and revoke permissions on objects to users and groups.

With ADO and ADOX, the Connection object defines a session for a user for a data source. The Catalog object is the container for the data definition collections (Tables, Procedures, and Views) and the security collections (Users and Groups). Each Catalog object is associated with only one Connection to an underlying data source.

[image: image2.jpg]
The ADOX model differs somewhat from the DAO model. DAO has a Workspace object that defines a session for a user but does not define the data source. The Workspace object is also the container for the Users and Groups collections. A Workspace can be created, and security information can be retrieved or modified without opening a database.

PRIVATE "TYPE=PICT;ALT="
[image: image3.jpg]Each of the Table, Index, and Column objects also has a standard ADO Properties collection.

JRO: Replication
The JRO model contains objects, properties, and methods for creating, modifying, and synchronizing replicas. It is designed specifically for use with the Jet Provider. Unlike ADO and ADOX, JRO cannot be used with data sources other than Microsoft Jet databases.

The primary object in the JRO model is the Replica object. The Replica object is used to create new replicas, to retrieve and modify properties of an existing replica, and to synchronize changes with other replicas. This differs from DAO in which the Database object is used for these tasks.

[image: image4.jpg]
JRO also includes a JetEngine object, for two specific Microsoft Jet database engine features: compacting the database and refreshing data from the memory cache.

PRIVATE "TYPE=PICT;ALT="
Getting Started
To run the code examples in this document, you need references to the ADO, ADOX, and JRO type libraries in your database or project. By default, new Microsoft Access 2000 databases have a reference to ADO. However, to run these samples you'll need to add references to ADOX and JRO. If you converted an existing database to Access 2000 or are programming in Microsoft Visual Basic® or some other application, you will need to include all of the references yourself.

To add these references in Access 2000:

1. Open a module.

2. From the Tools menu select References…
3. From the list, select "Microsoft ActiveX Data Objects 2.1 Library."

4. From the list, select "Microsoft ADO Ext. 2.1 for DDL and Security."

5. From the list, select "Microsoft Jet and Replication Objects 2.1 Library."

6. Click OK.

To add these references in Visual Basic:
1. Open a project.

2. From the Project menu select References…
3. From the list, select "Microsoft ActiveX Data Objects 2.1 Library."

4. From the list, select "Microsoft ADO Ext. 2.1 for DDL and Security."

5. From the list, select "Microsoft Jet and Replication Objects 2.1 Library."

6. Click OK.

If you include references to both ADO and DAO in the same project, you need to explicitly specify which library to use when declaring objects because DAO and ADO include several objects with the same names. For example, both models include a Recordset object, so the following code is ambiguous:
Dim rst as Recordset
To specify which object model you want to use, include a qualifier as shown:
Dim rstADO As ADODB.Recordset

Dim rstDAO As DAO.Recordset
If the qualifier is omitted, Visual Basic for Applications will choose the object from the model that is referenced first. So if your list of references were ordered as follows in the References dialog box, an object declared as Recordset with no qualifier would be a DAO Recordset.

Visual Basic For Applications

Microsoft DAO 3.6 Object Library

Microsoft ActiveX Data Objects 2.1 Library

Microsoft ADO Ext. 2.1 for DDL and Security

Microsoft Jet and Replication Objects 2.1 Library

Opening a Database
Generally, one of the first steps in writing an application to access data is to open the data source. When using the Microsoft Jet database engine, you can open Microsoft Jet databases, other external data sources such as Microsoft Excel, Paradox, and dBASE with Microsoft Jet's ISAM components, and ODBC data sources.

Microsoft Jet Databases
The Jet Provider can open Microsoft Jet 4.0 databases as well as databases created with previous versions of the Jet database engine.

The following code demonstrates how to open a Microsoft Jet database for shared, updatable access. Then the code immediately closes the database because this code is for demonstration purposes.

DAO
Sub DAOOpenJetDatabase()

Dim db As DAO.Database

Set db = DBEngine.OpenDatabase("C:\Nwind.mdb")

db.Close

End Sub
ADO
Sub ADOOpenJetDatabase()

Dim cnn As New ADODB.Connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Nwind.mdb;"

cnn.Close

End Sub

These two code listings for opening a database look somewhat different, but are not all that dissimilar. Aside from the fact that the objects have different names, the major difference is the format of the string passed in to the open method.

The ADO connection string in this example has two parts: the provider tag and the data source tag. The provider tag indicates which OLE DB provider to use, and the data source tag indicates which database to open. With DAO, it is assumed that you want to use Microsoft Jet, whereas with ADO you must explicitly specify that you want to use Microsoft Jet.

By default, both DAO and ADO open a database for shared updatable access, when using the Jet Provider. However, there may be times when you want to open the database exclusively or in read-only mode.

The following code listings show how to open (and then close) a shared, read-only database using in DAO and ADO.

DAO
Sub DAOOpenJetDatabaseReadOnly()

Dim db As DAO.Database

'Open shared, read-only.

Set db = DBEngine.OpenDatabase("C:\nwind.mdb", False, True)

db.Close

End Sub
ADO
Sub ADOOpenJetDatabaseReadOnly()

Dim cnn As New ADODB.Connection

'Open shared, read-only

cnn.Mode = adModeRead

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

cnn.Close

End Sub
In the DAO listing, the second two parameters to the OpenDatabase method indicate exclusive and read-only access respectively. In the ADO listing, the Connection objec Mode property is set to the read-only constant (adModeRead). By default, ADO connections are opened for shared, updatable access unless another mode is set (for example, adModeShareExclusive).

Alternatively, the ADO listing could have been written in a single line of code as follows:
Sub OpenJetDatabaseExclusive()

Dim cnn As New ADODB.Connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;Mode=" & adModeRead

cnn.Close

End Sub

In this listing, the Mode property was specified as a part of the connection string to the Open method rather than as a property of the Connection object. In ADO, you can set connection properties as a property or string them together with other properties to create the connection string. Even provider-specific properties (prefixed by "Jet OLEDB:" for Jet-specific properties) can be set as part of the connection string or with the Connection object's Properties collection. For a description of the available properties, see "Appendix B: Properties Reference" later in this document.

The Microsoft Jet database engine exposes a number of settable options that will dictate how the engine will behave. These options often have a direct impact on performance. By default when the Jet database engine is initialized, it uses the values set in the Windows registry under the \HKEY_LOCAL_MACHINES\Software\Microsoft\Jet key. At run time, it is possible to temporarily override these settings. In ADO, these values are set as part of the connection string.

The following listings demonstrate how to override the Page Timeout setting of the engine and open a database using that setting.

DAO
Sub DAOSetJetDBOption()

Dim db As DAO.Database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

DBEngine.SetOption dbPageTimeout, 4000

db.Close

End Sub
ADO
Sub ADOSetJetDBOption()

Dim cnn As New ADODB.Connection

cnn.Provider = "Microsoft.Jet.OLEDB.4.0"

cnn.Open "C:\nwind.mdb"

cnn.Properties("Jet OLEDB:Page Timeout") = 4000

cnn.Close

End Sub

With DAO, you use the SetOption method to set the values for these database settings. There is no corresponding GetOption method to retrieve the values. With ADO, you use a property in the Connection object's Properties collection. You can read the value of the property using ADO; however this value is not accurate unless you have previously set the value for the property. For example, the Jet OLEDB:Page Timeout property will return the value 0 prior to setting this property even though the value defined for this property in the HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\Engines\Jet 4.0\PageTimeout registry key is actually 5000.

Another minor difference between ADO and DAO is that with ADO the Connection must be opened before these properties are available. With DAO, these properties can be set on the DBEngine object prior to opening the database.

As shown in the listings, you can optionally set the provider in the Provider property, rather than in the connection string. The "Data Source=" section of the connection string can also be omitted, and ADO will assume this is the default value for the path in the connection string. This is simply an alternative method of opening a connection; with ADO there are sometimes many equally valid ways to accomplish a task. Later in this document, the section "Opening a Database with User Level Security," explains a scenario where it is required that you indicate the provider in the Provider property rather than in the connection string.

The following table lists the values that can be set with DAO's SetOption method and the corresponding property to use with ADO.

	PRIVATE
DAO constant
	ADO property

	dbPageTimeout
	Jet OLEDB:Page Timeout

	dbSharedAsyncDelay
	Jet OLEDB:Shared Async Delay

	dbExclusiveAsyncDelay
	Jet OLEDB:Exclusive Async Delay

	dbLockRetry
	Jet OLEDB:Lock Retry

	dbUserCommitSync
	Jet OLEDB:User Commit Sync

	dbImplicitCommitSync
	Jet OLEDB:Implicit Commit Sync

	dbMaxBufferSize
	Jet OLEDB:Max Buffer Size

	dbMaxLocksPerFile
	Jet OLEDB:Max Locks Per File

	dbLockDelay
	Jet OLEDB:Lock Delay

	dbRecycleLVs
	Jet OLEDB:Recycle Long-Valued Pages

	dbFlushTransactionTimeout
	Jet OLEDB:Flush Transaction Timeout

Secured Microsoft Jet Databases
Microsoft Jet databases can be secured in one of two ways: with either share-level security or user-level security. With share-level security, the database is secured with a password. Anyone attempting to open the database must specify the correct database password. With user-level security, each user is assigned a user name and password to open the database. Microsoft Jetuses a separate workgroup information file, typically named "system.mdw" to store user information and passwords. See the section, "Security" for more information about creating and using secured Microsoft Jetdatabases.
Share-Level (Password Protected) Databases
The following listings demonstrate how to open a Microsoft Jet database that has been secured at the share level.

DAO
Sub DAOOpenDBPasswordDatabase()

Dim db As DAO.Database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb", False, False,";pwd=password")

db.Close

End Sub
ADO
Sub ADOOpenDBPasswordDatabase()

Dim cnn As New ADODB.Connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;Jet OLEDB:Database Password=password;"

cnn.Close

End Sub

In DAO, the Connect parameter of the OpenDatabase method sets the database password when opening a database. With ADO, the Jet Provider connection property Jet OLEDB:Database Password sets the password instead.
Opening a Database with User-Level Security
This next listings demonstrate how to open a database that is secured at the user level using a workgroup information file named "sysdb.mdw".
DAO
Sub DAOOpenSecuredDatabase()

Dim wks As DAO.Workspace

Dim db As DAO.Database

DBEngine.SystemDB = "c:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("c:\nwind.mdb") End Sub
ADO
Sub ADOOpenSecuredDatabase()

Dim cnn As New ADODB.Connection

cnn.Provider = "Microsoft.Jet.OLEDB.4.0"

cnn.Properties("Jet OLEDB:System database") = "c:\sysdb.mdw"

cnn.Open "Data Source=c:\nwind.mdb;User Id=Admin;Password=password;"

End Sub

In ADO, a Microsoft Jet provider-specific connection property, Jet OLEDB:System database, specifies the system database. This is equivalent to setting the DBEngine object's SystemDB property before opening a database using DAO.

Notice that in this example, the Provider property is set as a property of the Connection object rather than as part of the ConnectionString argument to the Open method. That is because before you can reference provider-specific properties from the Connection object's Properties collection, it is necessary to indicate which provider you are using. If the first line of code had been omitted, error 3265 (adErrItemNotFound), "ADO could not find the object in the collection corresponding to the name or ordinal reference requested by the application." would have occurred when trying to set the value for the Jet OLEDB:System database property.

Note that in both DAO and ADO, setting the system database may not be necessary. You may omit the code that sets the system database if you want to use the current Microsoft Jet workgroup information file as specified in the SystemDB key in the Microsoft Jet registry entries.

External Databases
The Microsoft Jet database engine can be used to access other database files, spreadsheets, and textual data stored in tabular format through installable ISAM drivers.

The following listings demonstrate how to open a Microsoft Excel 2000 spreadsheet first using DAO, then using ADO and the Jet provider.

DAO
Sub DAOOpenISAMDatabase()

Dim db As DAO.Database

Set db = DBEngine.OpenDatabase("C:\Sales.xls", _

False, False, "Excel 8.0;")

db.Close

End Sub
ADO
Sub ADOOpenISAMDatabase()

Dim cnn As New ADODB.Connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\Sales.xls;Extended Properties=Excel 8.0;"

cnn.Close

End Sub

The DAO and ADO code for opening an external database is similar. In both examples, the name of the external file (Sales.xls) is used in place of a Microsoft Jet database file name. With both DAO and ADO you must also specify the type of external database you are opening, in this case, an Excel 2000 spreadsheet. With DAO, the database type is specified in the Connect argument of the OpenDatabase method. The database type is specified in the Extended Properties property of the Connection with ADO. The following table lists the strings to use to specify which ISAM to open.

	PRIVATE
Database
	String

	dBASE III
	dBASE III;

	dBASE IV
	dBASE IV;

	dBASE 5
	dBASE 5.0;

	Paradox 3.x
	Paradox 3.x;

	Paradox 4.x
	Paradox 4.x;

	Paradox 5.x
	Paradox 5.x;

	Excel 3.0
	Excel 3.0;

	Excel 4.0
	Excel 4.0;

	Excel 5.0/Excel 95
	Excel 5.0;

	Excel 97
	Excel 97;

	Excel 2000
	Excel 8.0;

	HTML Import
	HTML Import;

	HTML Export
	HTML Export;

	Text
	Text;

	ODBC
	ODBC;
DATABASE=database;
UID=user;
PWD=password;
DSN=datasourcename;

Note that if you are migrating from DAO 3.5 or earlier with the FoxPro ISAM to ADO with the Jet Provider, you will need to use Visual FoxPro ODBC Driver as Microsoft Jet 4.0 does not support the FoxPro ISAM.

The Current Microsoft Access Database
When you open an Access database, you are opening a Microsoft Jet database. When writing code within Access, you may often want to use the same connection to Microsoft Jet as Access is using. To allow you to do this, Microsoft Access 2000 exposes two mechanisms: CurrentDB() and CurrentProject.Connection that allow you to get a DAO Database object and an ADO Connection object, respectively, for the database Access currently has open.

The following listings demonstrate how to get a reference to the database currently open in Microsoft Access.

DAO
Sub DAOGetCurrentDatabase()

Dim db As DAO.Database

Set db = CurrentDb()

End Sub
ADO
Sub ADOGetCurrentDatabase()

Dim cnn As ADODB.Connection

Set cnn = CurrentProject.Connection

End Sub

Retrieving and Modifying Data
Both DAO and ADO include a Recordset object that is the primary object used for retrieving and modifying data. A Recordset object represents a set of records in a table or a set of records that are a result of a query.

The Recordset object contains a Fields collection that contains Field objects, each of which represent a single column of data within the Recordset.
Opening a Recordset
Like DAO, ADO Recordset objects can be opened from several different objects. In ADO, a Recordset can be opened with the Connection object Execute method, the Command object Execute method, or the Recordset object Open method. ADO Recordset objects cannot be opened directly from Table, Procedure, or View objects. ADO Recordset objects opened with the Execute method are always forward-only, read-only recordsets. If you need to be able to scroll or update data within the Recordset you must use the Recordset object Open method.

The CursorType, LockType, and Options parameters of the Open method determine the type of Recordset that is returned. The table below shows how the parameters to the DAO Recordset object Open method can be mapped to ADO properties.

	PRIVATE
DAO Recordset type
	ADO Recordset properties or parameters

	dbOpenDynaset
	CursorType=adOpenKeyset

	dbOpenSnapshot
	CursorType=adOpenStatic

	dbOpenForwardOnly
	CursorType=adOpenForwardOnly

	dbOpenTable
	CursorType=adOpenKeyset, Options=adCmdTableDirect

	PRIVATE
DAO Recordset Options values
	ADO Recordset properties

	dbAppendOnly
	Properties("Append-Only Rowset")

	dbSQLPassThrough
	Properties("Jet OLEDB:ODBC Pass-Through Statement")

	dbSeeChanges
	No equivalent.

	dbDenyWrite
	No equivalent.

	dbDenyRead
	No equivalent.

	dbInconsistent
	Properties("Jet OLEDB:Inconsistent") = True

	dbConsistent
	Properties("Jet OLEDB:Inconsistent") = False

	PRIVATE
DAO Recordset LockType values
	ADO Recordset LockType values

	dbReadOnly
	adLockReadOnly

	dbPessimistic
	adLockPessimistic

	dbOptimistic
	adLockOptimistic

The Jet Provider does not support a number of combinations of CursorType and LockType. For example, CursorType=adOpenDynamic and LockType=adLockOptimistic. If you specify an unsupported combination, ADO will pass your request to the Jet Provider, which will then degrade to a supported CursorType or LockType. Use the CursorType and LockType properties of the Recordset once it is opened to determine what type of Recordset was created.

The following listings demonstrate how to open a forward-only, read-only Recordset, then prints the values of each field.

DAO
Sub DAOOpenRecordset()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Select * from Customers where Region" & _

" = 'WA'", dbOpenForwardOnly, dbReadOnly)

'Print the values for the fields in the first record in the debug

'window

For Each fld In rst.Fields

Debug.Print fld.Value & ";";

Next

'Close the recordset

rst.Close

End Sub

ADO
Sub ADOOpenRecordset()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

Dim fld As ADODB.Field

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the forward-only, read-only recordset

rst.Open "Select * from Customers where Region = 'WA'", cnn, _

adOpenForwardOnly, adLockReadOnly

'Print the values for the fields in the first record in the debug

'window

For Each fld In rst.Fields

Debug.Print fld.Value & ";";

Next

'Close the recordset

rst.Close

End Sub

In the DAO and ADO code above, the Recordset is opened and then the data in the first record of the Recordset is printed to the Debug by iterating through each field in the Fields collection and printing its Value.
Using Client Cursors
ADO Recordset objects have an additional property, CursorLocation, not found in DAO that affects the functionality and performance of the Recordset. This property has two valid values: adUseServer and adUseClient. The default is adUseServer, which indicates that the provider's or data source's cursors should be used.

When the CursorLocation property is set to adUseClient, ADO will invoke the Microsoft Cursor Service for OLE DB to create the Recordset. The Cursor Service retrieves data from the underlying data provider using a forward-only, read-only cursor and stores all of the data in its own cache on the client. When data is requested through ADO, the Cursor Service returns the data from its own cache rather than passing the request down to the provider. This often results in fairly significant performance gains when the underlying data source is on a remote server as is often the case with SQL Server. However, when the data is stored in a local Microsoft Jet database, this can result in fairly significant performance degradation as the data is being cached twice on the client, once in Microsoft Jet and once in the Cursor Service.

While there may be a performance penalty for using the Cursor Service, it does provide some functionality found in DAO that is not currently exposed in the Jet Provider. For example, adUseClient must be specified for CursorLocation in order to sort an existing Recordset. (See the section, "Filtering and Sorting Data in a Recordset" for more information about how to use the Cursor Service to sort a Recordset.)

When developing your application, you'll generally want to specify adUseServer as the CursorLocation to get performance and functionality similar to DAO. However, in the few cases where the Jet Provider does not provide the functionality needed, consider using client cursors.

Navigating Within a Recordset
A Recordset object has a current position. The position may be before the first record (BOF), after the last record (EOF), or on a specific record within the Recordset. When retrieving information with the Field object, the information always pertains to the record at the current position.
Moving To Another Record
Both DAO and ADO contain several methods for moving from one record to another. These methods are: Move, MoveFirst, MoveLast, MoveNext, and MovePrevious.

The following listings demonstrate how to use the MoveNext method to iterate through all of the records in the Recordset.

DAO
Sub DAOMoveNext()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Select * from Customers where Region" & _

" = 'WA'", dbOpenForwardOnly, dbReadOnly)

'Print the values for the fields in the first record in the debug

'window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOMoveNext()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

Dim fld As ADODB.Field

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the forward-only, read-only recordset

rst.Open "Select * from Customers where Region = 'WA'", cnn, _

adOpenForwardOnly, adLockReadOnly

'Print the values for the fields in the first record in the debug

'window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub

Notice that the code for iterating through the Recordset in DAO and ADO is identical.

For this particular example, the ADO code could be rewritten to use the Recordset object's GetString method to print the data to the Debug window. This method returns a formatted string containing data from the the records in the recordset. Using GetString, the While loop in the previous ADO example could be replaced with the single line:
Debug.Print rst.GetString(adClipString, , ";")
This method is handy for debugging as well as populating grids and other controls that allow you to pass in a formatted string representing the data. GetString is also faster than looping through the Recordset and generating the string with Visual Basic for Applications code.

The ADO example could also have been rewritten more concisely by using the Recordset object's Open method's ActiveConnection parameter to specify the connection string rather than first opening a Connection object and then passing that object in as the ActiveConnection. The Recordset object's Open method call would look like this:

rst.Open "Select * from Customers where Region = 'WA'", _

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;", _

adOpenForwardOnly, adLockReadOnly

Internally, these two mechanisms are essentially the same. When you pass a connection string to the Recordset object's Open method (rather than assigning a Connection object to the Recordset object's ActiveConnection property), ADO creates a new, internal Connection object. However, ADO will create a new internal Connection object for each Recordset you open using a connection string. If you plan on opening more than one Recordset from a given data source, or opening Command or Catalog objects, create a Connection object and use that object for the ActiveConnection. This will reduce the amount of resources consumed and increase performance.

Determining Current Position
When working with records in a Recordset it may be useful to know what the record number of the current record is. Both ADO and DAO have an AbsolutePosition property that can be used to determine the record number. The following code listings demonstrate how to use the AbsolutePosition property in both DAO and ADO.
DAO
Sub DAOGetCurrentPosition()

Dim db As DAO.Database

Dim rst As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Select * from Customers", dbOpenDynaset)

'Print the absolute position

Debug.Print rst.AbsolutePosition

'Move to the last record

rst.MoveLast

'Print the absolute position

Debug.Print rst.AbsolutePosition

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOGetCurrentPosition()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.CursorLocation = adUseClient

rst.Open "Select * From Customers", cnn, adOpenKeyset, _

adLockOptimistic, adCmdText

'Print the absolute position

Debug.Print rst.AbsolutePosition

'Move to the last record

rst.MoveLast

'Print the absolute position

Debug.Print rst.AbsolutePosition

'Close the recordset

rst.Close

End Sub

The ADO and DAO code for determining the current position within the Recordset looks very similar. However, note that the results printed to the debug window are different. With DAO, the AbsolutePosition property is zero-based; the first record in the recordset has an AbsolutePosition of 0. With ADO, the AbsolutePosition property is one-based; the first record in the recordset has an AbsolutePosition of 1.

Note that in the ADO code example, the CursorLocation property is set to adUseClient. If the CursorLocation is not specified or is set to adUseServer, the AbsolutePosition property will return adUnknown (-1) because the Jet Provider does not support retrieving this information. See the section, "Using Client Cursors" for more information about using the CursorLocation property.

In addition to the AbsolutePosition property, DAO also has a PercentPosition property that returns a percentage representing the approximate position of the current record within the Recordset. ADO does not have a property or method that provides the functionality equivalent to DAO's PercentPosition property. However, when using client cursors (adUseClient), the user can calulate an approximate percent position from the CursorLocation and RecordCount properties in ADO.

Finding Records in a Recordset
Both DAO and ADO have two mechanisms for locating a record in a Recordset: Find and Seek. With both mechanisms you specify criteria to use to locate a matching record. In general, for equivalent types of searches, Seek provides better performance than Find. However, because Seek uses an underlying index to locate the record, it is limited to Recordset objects that have associated indexes. For Microsoft Jet databases only, Recordset objects based on a table (DAO dbOpenTable, ADO adCmdTableDirect) with an index support Seek.

Using the Find Method
The following listings demonstrate how to locate a record using Find.

DAO
Sub DAOFindRecord()

Dim db As DAO.Database

Dim rst As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Customers", dbOpenDynaset)

'Find the first customer who's country is USA

rst.FindFirst "Country = 'USA'"

'Print the customer id's of all customers in the USA

While Not rst.NoMatch

Debug.Print rst.Fields("CustomerId").Value

rst.FindNext "Country = 'USA'"

Wend

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOFindRecord()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "Customers", cnn, adOpenKeyset, adLockOptimistic

'Find the first customer who's country is USA

rst.Find "Country='USA'"

'Print the customer id's of all customers in the USA

While Not rst.EOF

Debug.Print rst.Fields("CustomerId").Value

rst.Find "Country='USA'", 1

Wend

'Close the recordset

rst.Close

End Sub

DAO includes four find methods: FindFirst, FindLast, FindNext, FindPrevious. You choose which method to use based on the point from which you want to start searching (beginning, end, or curent record) and in which direction you want to search (forward or backward).

ADO has a single method: Find. Searching always begins from the current record. The Find method has parameters that allow you to specify the search direction as well as an offset from the current record at which to beginning searching (SkipRows). The following table shows how to map the four DAO methods to the equivalent functionality in ADO.

	PRIVATE
DAO method
	ADO Find with SkipRows
	ADO search direction

	FindFirst
	0
	adSearchForward (if not currently positioned on the first record, call MoveFirst before Find)

	FindLast
	0
	adSearchBackward (if not currently positioned on the last record, call MoveLast before Find)

	FindNext
	1
	adSearchForward

	FindPrevious
	1
	adSearchBackward

DAO and ADO require a different syntax for locating records based on a Null value. In DAO if you want to find a record that has a Null value you use the following syntax:
"ColumnName Is Null"
or, to find a record that does not have a Null value for that column:
"ColumnName Is Not Null"
ADO, however, does not recognize the Is operator. You must use the = or <> operators instead. So the equivalent ADO criteria would be:
"ColumnName = Null"
or
"ColumnName <> Null"
So far, each of the criteria shown in the examples above are based on a value for a single column. However, with DAO, the Criteria parameter is like the WHERE clause in an SQL statement and can contain multiple columns and compare operators within the criteria.

This is not the case with ADO. The ADO Criteria parameter is a string containing a single column name, comparison operator, and value to use in the search. If you need to find a record based on multiple columns, use the Filter property (see the section, "Filtering and Sorting Data") to create a view of the Recordset that only contains those records matching the criteria.

DAO and ADO behave differently if a record that meets the specified criteria is not found. DAO sets the NoMatch property to True and the current record is not defined. If ADO does not find a record that meets the criteria, the current record is positioned either before the beginning of the Recordset if searching forward (adSearchForward) or after the end of the Recordset if searching backward (adSearchBackward). Use the BOF or EOF properties as appropriate to determine whether or not a match was found.
Using the Seek Method
The following listings demonstrate how to locate a record using Seek.

DAO
Sub DAOSeekRecord()

Dim db As DAO.Database

Dim rst As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("order Details", dbOpenTable)

'Select the index used to order the data in the recordset

rst.Index = "PrimaryKey"

'Find the order where OrderId = 10255 and ProductId = 16

rst.Seek "=", 10255, 16

'If a match is found print the quantity of the order

If Not rst.NoMatch Then

Debug.Print rst.Fields("Quantity").Value

End If

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOSeekRecord()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Select the index used to order the data in the recordset

rst.Index = "PrimaryKey"

'Open the recordset

rst.Open "Order Details", cnn, adOpenKeyset, adLockOptimistic, _

adCmdTableDirect

'Find the order where OrderId = 10255 and ProductId = 16

rst.Seek Array(10255, 16), adSeekFirstEQ

'If a match is found print the quantity of the order

If Not rst.EOF Then

Debug.Print rst.Fields("Quantity").Value

End If

'Close the recordset

rst.Close

End Sub
Because Seek is based on an index, it is important to specify an index before searching. In the previous example, this is not strictly necessary because Microsoft Jet will use the primary key if an index is not specified.

In the ADO example, the Visual Basic for Applications Array function is used when specifying a value for more than one column as part of the KeyValues parameter. If only one value is specified, it is not necessary to use the Array function.

As with the Find method, use the NoMatch property with DAO to determine whether or not a matching record was found. Use the BOF and EOF properties as appropriate with ADO.

Filtering and Sorting Data in a Recordset
In general, filtering and sorting of data should be done by specifying an SQL WHERE or ORDER BY clause in the SQL statement or stored query used to open the Recordset.
Using the Filter Property
The following listings demonstrate how to use the Filter property.
DAO
Sub DAOFilterRecordset()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim rstFlt As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Customers", dbOpenDynaset)

' Set the Filter to be used for subsequent recordsets

rst.Filter = "Country='USA' And Fax Is not Null"

'Open the filtered recordset

Set rstFlt = rst.OpenRecordset()

Debug.Print rstFlt.Fields("CustomerId").Value

'Close the recordsets

rst.Close

rstFlt.Close

End Sub
ADO
Sub ADOFilterRecordset()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "Customers", cnn, adOpenKeyset, adLockOptimistic

' Filter the recordset to include only those customers in

'the USA that have a fax number

rst.Filter = "Country='USA' And Fax<>Null"

Debug.Print rst.Fields("CustomerId").Value

'Close the recordset

rst.Close

End Sub

The DAO and ADO Filter properties are used slightly differently. With DAO, the Filter property specifies a filter to be applied to any subsequently opened Recordset objects based on the Recordset for which you have applied the filter. With ADO, the Filter property applies to the Recordset to which you applied the filter. The ADO Filter property allows you to create a temporary view that can be used to locate a particular record or set of records within the Recordset. When a filter is applied to the Recordset, the RecordCount property reflects just the number of records within the view. The filter can be removed by setting the Filter property to adFilterNone.

Using the Sort Method
The following listings demonstrate how to sort records with the Sort method.

DAO
Sub DAOSortRecordset()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim rstSort As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Customers", dbOpenDynaset)

' Sort the recordset based on Country and Region both in

'ascending order

rst.Sort = "Country, Region"

'Open the sorted recordset

Set rstSort = rst.OpenRecordset()

Debug.Print rstSort.Fields("CustomerId").Value

'Close the recordsets

rst.Close

rstSort.Close

End Sub
ADO
Sub ADOSortRecordset()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.CursorLocation = adUseClient

rst.Open "Customers", cnn, adOpenKeyset, adLockOptimistic

' Sort the recordset based on Country and Region both in

'ascending order

rst.Sort = "Country, Region"

Debug.Print rst.Fields("CustomerId").Value

'Close the recordset

rst.Close

End Sub

Like the Filter property, the DAO and ADO Sort properties differ in that the DAO Sort applies to subsequently opened Recordset objects, and for ADO it applies to the current Recordset.

Note that the Jet Provider does not support the OLE DB interfaces that ADO could use to filter and sort the Recordset (IViewFilter and IViewSort). In the case of Filter, ADO will perform the filter itself. However, for Sort, you must use the Cursor Service by specifying adUseClient for the CursorLocation property prior to opening the Recordset. The Cursor Service will copy all of the records in the Recordset to a cache on your local machine and will build temporary indexes in order to perform the sorting. In many cases, you may achieve better performance by re-executing the query used to open the Recordset and specifying an SQL WHERE or ORDER BY clause as appropriate.

Also, you may not get identical results with DAO and ADO when sorting Recordset objects. In the example above, the DAO code returns 'RANCH' as the CustomerId while the ADO code returns 'CACTU' as the CustomerId. Both results are valid, but differ as a result of different algorithms used by Microsoft Jet and the Cursor Service for sorting data.

Updating Data in a Recordset
Once you have opened an updatable recordset by specifying the appropriate DAO Recordset object Type or ADO CursorType and LockType you can change, delete, or add new records using methods of the Recordset object.
Adding New Records
Both DAO and ADO allow you to add new records to an updatable Recordset by first calling the AddNew method, then specifying the values for the fields, and finally committing the changes with the Update method. The following code shows how to add a new record using DAO and ADO.
DAO
Sub DAOAddRecord()

Dim db As DAO.Database

Dim rst As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Select * from Customers", dbOpenDynaset)

'Add a new record

rst.AddNew

'Specify the values for the fields

rst!CustomerId = "HENRY"

rst!CompanyName = "Henry's Chop House"

rst!ContactName = "Mark Henry"

rst!ContactTitle = "Sales Representative"

rst!Address = "40178 NE 8th Street"

rst!City = "Bellevue"

rst!Region = "WA"

rst!PostalCode = "98107"

rst!Country = "USA"

rst!Phone = "(425) 899-9876"

rst!Fax = "(425) 898-8908"

'Save the changes you made to the current record in the Recordset

rst.Update

'For this example, just print out CustomerId for the new record

'Position recordset on new record

rst.Bookmark = rst.LastModified

Debug.Print rst!CustomerId

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOAddRecord()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "Select * from Customers", cnn, adOpenKeyset, _

adLockOptimistic

' Add a new record

rst.AddNew

'Specify the values for the fields

rst!CustomerId = "HENRY"

rst!CompanyName = "Henry's Chop House"

rst!ContactName = "Mark Henry"

rst!ContactTitle = "Sales Representative"

rst!Address = "40178 NE 8th Street"

rst!City = "Bellevue"

rst!Region = "WA"

rst!PostalCode = "98107"

rst!Country = "USA"

rst!Phone = "(425) 899-9876"

rst!Fax = "(425) 898-8908"

'Save the changes you made to the current record in the Recordset

rst.Update

'For this example, just print out CustomerId for the new record

Debug.Print rst!CustomerId

'Close the recordset

rst.Close

End Sub

DAO and ADO behave differently when a new record is added. With DAO, the record that was current before you used AddNew remains current. With ADO, the newly inserted record becomes the current record. Because of this, it is not necessary to explicitly reposition on the new record to get information such as the value of an auto-increment column for the new record. For this reason, in the ADO example above, there is no equivalent code to the rst.Bookmark = rst.LastModified code found in the DAO example.

ADO also provides a shortcut syntax for adding new records. The AddNew method has two optional parameters, FieldList and Values, that take an array of field names and field values respectively. The following example demonstrates how to use the shortcut syntax.

Sub ADOAddRecord2()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "Select * from Shippers", cnn, adOpenKeyset, _

adLockOptimistic

' Add a new record

rst.AddNew Array("CompanyName", "Phone"), _

Array("World Express", "(425) 899-7863")

'Save the changes you made to the current record in the Recordset

rst.Update

'For this example, just print out the ShipperId for the new row.

Debug.Print rst!ShipperId

'Close the recordset

rst.Close

End Sub

Updating Existing Records
The following code demonstrates how to open a scrollable, updatable Recordset and modify the data in a record.
DAO
Sub DAOUpdateRecord()

Dim db As DAO.Database

Dim rst As DAO.Recordset

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Select * from Customers where " & _

"CustomerId = 'LAZYK'", dbOpenDynaset)

'Put the Recordset in Edit Mode

rst.Edit

'Update the Contact name of the first record

rst.Fields("ContactName").Value = "New Name"

'Save the changes you made to the current record in the Recordset

rst.Update

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOUpdateRecord()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "Select * from Customers where CustomerId = 'LAZYK'", _

cnn, adOpenKeyset, adLockOptimistic

' Update the Contact name of the first record

rst.Fields("ContactName").Value = "New Name"

'Save the changes you made to the current record in the Recordset

rst.Update

'Close the recordset

rst.Close

End Sub

Alternatively, in both the DAO and ADO code examples, the explicit syntax
rst!ContactName = "New Name"
can be shortened to
rst.Fields("ContactName").Value = "New Name"
The ADO and DAO code for updating data in a Recordset is very similar. The major difference between the two examples above is that DAO requires that you put the Recordset into an editable state with the Edit method. ADO does not require you to explicitly indicate that you want to be in edit mode. With both DAO and ADO, you can verify the edit status of the current record by using the EditMode property.

One difference between DAO and ADO is the behavior when updating a record and then moving to another record without calling the Update method. With DAO, any changes made to the current record are lost when moving to another record without first calling Update. ADO automatically commits the changes to the current record when moving to a new record. You can explicitly discard changes to the current record with both DAO and ADO by using the CancelUpdate method.

Executing Queries
Content coming soon.
Executing a Non-Parameterized Stored Query
A non-parameterized stored query is an SQL statement that has been saved in the database and does not require that additional variable information be specified in order to execute. The following listings demonstrate how to execute such a query.

DAO
Sub DAOExecuteQuery()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Open the Recordset

Set rst = db.OpenRecordset("Products Above Average Price", _

dbOpenForwardOnly, dbReadOnly)

'Display the records in the debug window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOExecuteQuery()

Dim cnn As New ADODB.Connection

Dim rst As New ADODB.Recordset

Dim fld As ADODB.Field

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the recordset

rst.Open "[Products Above Average Price]", cnn, adOpenForwardOnly, " _

adLockReadOnly, adCmdStoredProc

'Display the records in the debug window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub

The code for executing a non-parameterized, row-returning query is almost identical. With ADO, if the query name contains spaces you must use sqaure brackets ([]) around the name.
Executing a Parameterized Stored Query
A parameterized stored query is an SQL statement that has been saved in the database and requires that additional variable information be specified in order to execute. The code below shows how to execute such a query.

DAO
Sub DAOExecuteParamQuery()

Dim db As DAO.Database

Dim qdf As DAO.QueryDef

Dim rst As DAO.Recordset

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Get the QueryDef from the QueryDefs collection

Set qdf = db.QueryDefs("Sales by Year")

'Specify the parameter values

qdf.Parameters("Forms!Sales by Year Dialog!BeginningDate") _

= #8/1/1993#

qdf.Parameters("Forms!Sales by Year Dialog!EndingDate") = #8/31/1993#

'Open the Recordset

Set rst = qdf.OpenRecordset(dbOpenForwardOnly, dbReadOnly)

'Display the records in the debug window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub
ADO
Sub ADOExecuteParamQuery()

Dim cnn As New ADODB.Connection

Dim cat As New ADOX.Catalog

Dim cmd As ADODB.Command

Dim rst As New ADODB.Recordset

Dim fld As ADODB.Field

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the catalog

cat.ActiveConnection = cnn

'Get the Command object from the Procedure

Set cmd = cat.Procedures("Sales by Year").Command

'Specify the parameter values

cmd.Parameters("Forms!Sales by Year Dialog!BeginningDate") _

= #8/1/1993#

cmd.Parameters("Forms!Sales by Year Dialog!EndingDate") = #8/31/1993#

' Open the recordset

rst.Open cmd, , adOpenForwardOnly, adLockReadOnly, adCmdStoredProc

'Display the records in the debug window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

rst.Close

End Sub
Alternatively, the ADO example could be written more concisely by specifying the parameter values using the Parameters parameter with the Command object's Execute method. The following lines of code:

'Specify the parameter values

cmd.Parameters("Forms![Sales by Year Dialog]!BeginningDate") = & _

#8/1/93#

cmd.Parameters("Forms![Sales by Year Dialog]!EndingDate") = #8/31/93#

' Open the recordset

rst.Open cmd, , adOpenForwardOnly, adLockReadOnly

could be replaced by the single line:

'Execute the Command, passing in the values for the parameters

Set rst = cmd.Execute(, Array(#8/1/93#, #8/31/93#))

In one more variation of the ADO code to execute a parameterized query, the example could be rewritten to not use any ADOX code.

Sub ADOExecuteParamQuery2()

Dim cnn As New ADODB.Connection

Dim cmd As New ADODB.Command

Dim rst As New ADODB.Recordset

Dim fld As ADODB.Field

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Create the command

Set cmd.ActiveConnection = cnn

cmd.CommandText = "[Sales by Year]"

'Execute the Command, passing in the values for the parameters

Set rst = cmd.Execute(, Array(#8/1/93#, #8/31/93#), adCmdStoredProc)

' Display the records in the debug window

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value & ";";

Next

Debug.Print

rst.MoveNext

Wend

'Close the recordset

rst.Close

End Sub

Executing Bulk Operations
The ADO Command object's Execute method can be used for row-returning queries, as shown in the previous section, as well as for non row-returning queries—also known as bulk operations. The following code examples demonstrate how to execute a bulk operation in both DAO and ADO.

DAO
Sub DAOExecuteBulkOpQuery()

Dim db As DAO.Database

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Execute the query

db.Execute "Update Customers Set Country = 'United States' " & _

"WHERE Country = 'USA'"

Debug.Print "Records Affected = " & db.RecordsAffected

'Close the database

db.Close

End Sub
ADO
Sub ADOExecuteBulkOpQuery()

Dim cnn As New ADODB.Connection

Dim iAffected As Integer

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Execute the query

cnn.Execute "Update Customers Set Country = 'United States' " & _

"WHERE Country = 'USA'", iAffected, adExecuteNoRecords

Debug.Print "Records Affected = " & iAffected

'Close the connection

cnn.Close

End Sub

Unlike DAO which has two methods for executing SQL statements, OpenRecordset and Execute, ADO has a single method, Execute, that executes row-returning as well as bulk operations. In the ADO example, the constant adExecuteNoRecords indicates that the SQL statement is non row-returning. If this constant is omitted, the ADO code will still execute successfully, but you will pay a performance penalty. When adExecuteNoRecords is not specified, ADO will create a Recordset object as the return value for the Execute method. Creating this object is unnecessary overhead if the statement does not return records and should be avoided by specifying adExecuteNoRecords when you know that the statement is non row-returning.

Creating and Viewing Database Schema
Content coming soon.
Creating a Database
The following code creates and opens a new Microsoft Jet database.

DAO
Sub DAOCreateDatabase()

Dim db As DAO.Database

Set db = DBEngine.CreateDatabase("C:\new.mdb", dbLangGeneral)

End Sub
ADOX
Sub ADOCreateDatabase()

Dim cat As New ADOX.Catalog

cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\new.mdb;"

End Sub

In the DAO code above, the Locale parameter is specified as dbLangGeneral. In the ADOX code, locale is not explicitly specified. The default locale for the Jet Provider is equivalent to dbLangGeneral. Use the ADO Locale Identifier property to specify a different locale.

In DAO, CreateDatabase also can take a third Options parameter, specifying information for encrytion and database version. For example, the following line is used to create an encrypted, version 1.1 Microsoft Jet database:
Set db = DBEngine.CreateDatabase("C:\new.mdb", dbLangGeneral, dbEncrypt + dbVersion11)

In ADO, encryption and database version information is specified by provider-specific properties. With the Jet Provider, use the Encrypt Database and Engine Type properties, respectively. The following line of code specifies these values in the connection string to create an encrypted, version 1.1 Microsoft Jet database:

cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\new.mdb;" & _

"Jet OLEDB:Encrypt Database=True;" & _

"Jet OLEDB:Engine Type=2;"

Retrieving Schema Information
Both DAO and ADOX contain collections of objects that can be used to retrieve information about the database's schema. Information about the schema can be retrieved relatively easily by iterating through the objects in each of the collections.

The following code demonstrates how to print the name of every table in the database by looping through the DAO TableDefs collection and the ADOX Tables collection.

DAO
Sub DAOListTables()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Loop through the tables in the database and print their name

For Each tbl In db.TableDefs

Debug.Print tbl.Name

Next

End Sub
ADOX
Sub ADOListTables()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=c:\nwind.mdb;"

'Loop through the tables in the database and print their name

For Each tbl In cat.Tables

If tbl.Type <> "VIEW" Then Debug.Print tbl.Name

Next

End Sub

With DAO, the TableDef object represents a table in the database and the TableDefs collection contains a TableDef object for each table in the database. This is similar to ADO, in which the Table object represents a table and the Tables collection contains all the tables.

However, unlike DAO, the ADO Tables collection may contain Table objects that aren't actual tables in your Microsoft Jet database. For example, row-returning, non-parameterized Microsoft Jet queries (considered Views in ADO) are also included in the Tables collection. To determine whether or not the Table object represents a table in the database, use the Type property. The following table lists the possible values for the Type property when using ADO with the Jet Provider.

	PRIVATE
Type
	Description

	ACCESS TABLE
	The Table is an Access system table.

	LINK
	The Table is a linked table from a non-ODBC data source.

	PASS-THROUGH
	The Table is a linked table from an ODBC data source.

	SYSTEM TABLE
	The Table is a Microsoft Jet system table.

	TABLE
	The Table is a table.

	VIEW
	The Table is a row-returning, non-parameterized query.

In addition to being able to retrieve schema information using collections in ADOX, you can use the ADO OpenSchema method to return a Recordset containing information about the tables in the database. See "Appendix C: Schema Rowsets" for more information about the schema rowsets that are available in ADO when using the Jet Provider.

In general, it is faster to use the OpenSchema method rather than looping through the collection, because ADOX must incur the overhead of creating objects for each element in the collection. The following code demonstrates how to use the OpenSchema method to print the same information as the previous DAO and ADOX examples.

Sub ListTables2()

Dim cnn As New ADODB.Connection

Dim rst As ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the tables schema rowset

Set rst = cnn.OpenSchema(adSchemaTables)

'Loop through the results and print the names in the debug window

While Not rst.EOF

If rst.Fields("TABLE_TYPE") <> "VIEW" Then _ Debug.Print rst.Fields("TABLE_NAME")

rst.MoveNext

Wend

End Sub

Creating and Modifying Tables
Microsoft Jet databases can contain two types of tables. The first type is a local table, in which the definition and data are stored within the database. The second type is a linked table in which the table resides in an external database, but a link along with a copy of the table's definition is stored in the database.
Creating Local Tables
The following example creates a new local table named "Contacts."

DAO
Sub DAOCreateTable()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create a new TableDef object.

Set tbl = db.CreateTableDef("Contacts")

With tbl

' Create fields and append them to the new TableDef object.

' This must be done before appending the TableDef object to

' the TableDefs collection of the Database.

.Fields.Append .CreateField("ContactName", dbText)

.Fields.Append .CreateField("ContactTitle", dbText)

.Fields.Append .CreateField("Phone", dbText)

.Fields.Append .CreateField("Notes", dbMemo)

.Fields("Notes").Required = False

End With

' Add the new table to the database.

db.TableDefs.Append tbl

db.Close

End Sub
ADOX
Sub ADOCreateTable()

Dim cat As New ADOX.Catalog

Dim tbl As New ADOX.Table

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Create a new Table object.

With tbl

.Name = "Contacts"

' Create fields and append them to the new Table

' object. This must be done before appending the

' Table object to the Tables collection of the

' Catalog.

.Columns.Append "ContactName", adVarWChar

.Columns.Append "ContactTitle", adVarWChar

.Columns.Append "Phone", adVarWChar

.Columns.Append "Notes", adLongVarWChar

.Columns("Notes").Attributes = adColNullable

End With

'Add the new table to the database.

cat.Tables.Append tbl

Set cat = Nothing

End Sub
The process for creating a table using DAO or ADOX is the same. First, create the object (TableDef or Table), append the columns (Field or Column objects), and finally append the table to the collection. Though the process is the same, the syntax is slightly different.

With ADOX, it is not necessary to use a "create" method to create the column before appending it to the collection. The Append method can be used to both create and append the column.

You'll also notice the data type names for the columns are different between DAO and ADOX. The following table shows how the DAO data types that apply to Microsoft Jet databases map to the ADO data types.

	PRIVATE
DAO data type
	ADO data type

	dbBinary
	adBinary

	dbBoolean
	adBoolean

	dbByte
	adUnsignedTinyInt

	dbCurrency
	adCurrency

	dbDate
	adDate

	dbDecimal
	adNumeric

	dbDouble
	adDouble

	dbGUID
	adGUID

	dbInteger
	adSmallInt

	dbLong
	adInteger

	dbLongBinary
	adLongVarBinary

	dbMemo
	adLongVarWChar

	dbSingle
	adSingle

	dbText
	adVarWChar

Though not shown in this example, there are a number of other attributes of a table or column that you can set when creating the table or column, using the DAO Attributes property. The table below shows how these attributes map to ADO and Jet Provider-specific properties.

	PRIVATE
DAO TableDef Property
	Value
	ADOX Table Property
	Value

	Attributes
	dbAttachExclusive
	Jet OLEDB:Exclusive Link
	True

	Attributes
	dbAttachSavePWD
	Jet OLEDB:Cache Link Name/Password
	True

	Attributes
	dbAttachedTable
	Type
	"LINK"

	Attributes
	dbAttachedODBC
	Type
	"PASS-THROUGH"

	PRIVATE
DAO Field Property
	Value
	ADOX Column Property
	Value

	Attributes
	dbAutoIncrField
	AutoIncrement
	True

	Attributes
	dbFixedField
	ColumnAttributes
	adColFixed

	Attributes
	dbHyperlinkField
	Jet OLEDB:Hyperlink
	True

	Attributes
	dbSystemField
	
	

	Attributes
	dbUpdatableField
	
	

	Attributes
	dbVariableField
	ColumnAttributes
	Not adColFixed

Creating a Linked Table
Linking (also known as attaching) a table from an external database allows you to read data, update and add data (in most cases), and create queries using the table in the same way as you would with a table native to the database.

With Microsoft Jet you can create links to Microsoft Jet data, ISAM data (Text, FoxPro, dBASE, etc.), and ODBC data. Tables that are attached through ODBC are sometimes called pass-through tables.

The following listings demonstrate how to create a table that is linked to a table in another Microsoft Jet database.

DAO
Sub DAOCreateAttachedJetTable()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create a new TableDef object.

Set tbl = db.CreateTableDef("Authors")

'Set the properties to create the link

tbl.Connect = ";DATABASE=C:\pubs.mdb;pwd=password;"

tbl.SourceTableName = "authors"

'Add the new table to the database.

db.TableDefs.Append tbl

db.Close

End Sub
ADOX
Sub ADOCreateAttachedJetTable()

Dim cat As New ADOX.Catalog

Dim tbl As New ADOX.Table

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=c:\nwind.mdb;"

'Set the name and target catalog for the table

tbl.Name = "Authors"

Set tbl.ParentCatalog = cat

'Set the properties to create the link

tbl.Properties("Jet OLEDB:Create Link") = True

tbl.Properties("Jet OLEDB:Link Datasource") = "C:\pubs.mdb"

tbl.Properties("Jet OLEDB:Link Provider String") = ";pwd=password"

tbl.Properties("Jet OLEDB:Remote Table Name") = "authors"

'Append the table to the collection

cat.Tables.Append tbl

Set cat = Nothing

End Sub

To create a linked table, you must specify the external data source and the name of the external table. With DAO, the Connect and SourceTableName properties are used to specify this information. With ADOX, several Microsoft Jet provider-specific properties are used to create the link. When referencing the Table object's Properties collection prior to appending the Table to the Tables collection, you must first set the ParentCatalog property. This is necessary so ADOX knows from which OLE DB provider to receive the property information. See the section, "Appendix B: Properties Reference" for more information about the properties that are available in the Table object's Properties collection when using the Jet Provider.

With ADOX, the Jet OLEDB:Link Datasource property contains only the file and pathname for the database. It does not contain the "database=;" prefix nor is it used to specify the database password or other connection options as the Connect property does in DAO. To specify other connection options in ADOX code, use the Jet OLEDB:Link Provider String property. You do not need to set this property unless you need to set extra connection options. In the example above, if the pubs.mdb was not secured with a database password, you could omit the line of code that sets the Jet OLEDB:Link Provider String property.

Notice that when creating an attached table using both DAO and ADOX it is not necessary to create columns on the table. The Microsoft Jet database engine will automatically create the columns based on the definition of the table in the external data source.

This next example shows how to create a table that is linked to a table in an ODBC data source such as a Microsoft SQL Server database.
DAO
Sub DAOCreateAttachedODBCTable()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create a new TableDef object.

Set tbl = db.CreateTableDef("Titles")

'Set the properties to create the link

tbl.Connect = "ODBC;DSN=alyssa1;UID=sa;PWD=;"

tbl.SourceTableName = "titles"

'Add the new table to the database.

db.TableDefs.Append tbl

db.Close

End Sub
ADOX
Sub ADOCreateAttachedODBCTable()

Dim cat As New ADOX.Catalog

Dim tbl As New ADOX.Table

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Set the name and target catalog for the table

tbl.Name = "Titles"

Set tbl.ParentCatalog = cat

'Set the properties to create the link

tbl.Properties("Jet OLEDB:Create Link") = True

tbl.Properties("Jet OLEDB:Link Provider String") = _

"ODBC;DSN=alyssa1;UID=sa;PWD=;"

tbl.Properties("Jet OLEDB:Remote Table Name") = "titles"

' Append the table to the collection

cat.Tables.Append tbl

Set cat = Nothing

End Sub

Unlike DAO, which has a single Connect property, ADOX with the Jet Provider has a separate property that specifies the connection string for tables attached through ODBC. When creating tables attached through ODBC you may want to indicate that the password should be saved as part of the connection string (it is not saved by default). With ADOX, use the Jet OLEDB:Cache Link Name/Password property to indicate that the password should be cached. This is equivalent to setting the dbAttachSavePWD flag in the Table object's Attributes property using DAO.
Modifying an Existing Table
Once a table is created, you may want to modify it to add or remove columns, change the validation rule or refresh the link for a linked table.

The following listings demonstrate how to add a new auto-increment column to an existing table.

DAO
Sub DAOCreateAutoIncrColumn()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Get the Contacts table

Set tbl = db.TableDefs("Contacts")

'Create the new auto increment column

Set fld = tbl.CreateField("ContactId", dbLong)

fld.Attributes = dbAutoIncrField

' Add the new table to the database.

tbl.Fields.Append fld

db.Close

End Sub
ADOX
Sub ADOCreateAutoIncrColumn()

Dim cat As New ADOX.Catalog

Dim col As New ADOX.Column

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _ "Data Source=C:\nwind.mdb;"

' Create the new auto increment column

With col

.Name = "ContactId"

.Type = adInteger

Set .ParentCatalog = cat

.Properties("AutoIncrement") = True

End With

'Append the column to the table

cat.Tables("Contacts").Columns.Append col

Set cat = Nothing

End Sub

Notice that in the ADOX example, the ParentCatalog property must be set in order to access properties in the Column object's Property collection before the Column is appended to the table.

The next example shows how to update an existing linked table to refresh the link. This involves updating the connection string for the table and then resetting the Jet OLEDB:CreateLink property to tell Microsoft Jet to re-establish the link.

DAO
Sub DAORefreshLinks()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\orders.mdb")

For Each tbl In db.TableDefs

' Check to make sure table is a linked table.

If tbl.Attributes And dbAttachedTable Then tbl.Connect = ";DATABASE=C:\nwind.mdb" tbl.RefreshLink

End If

Next End Sub
ADOX
Sub RefreshLinks()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

For Each tbl In cat.Tables

' Check to make sure table is a linked table.

If tbl.Type = "LINK" Then tbl.Properties("Jet OLEDB:Link Datasource") = "C:\nwind.mdb" tbl.Properties("Jet OLEDB:Create Link") = True

End If

Next

End Sub
Creating an Index
Indexes on a column or columns in a table specify the order of records accessed from database tables and whether or not duplicate records are accepted. The following code creates an index on the Country field of the Employees table.

DAO
Sub DAOCreateIndex()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

Dim idx As DAO.Index

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

Set tbl = db.TableDefs("Employees")

'Create Index object append Field object to the Index object.

Set idx = tbl.CreateIndex("CountryIndex")

idx.Fields.Append idx.CreateField("Country")

'Append the Index object to the Indexes collection of the TableDef.

tbl.Indexes.Append idx

db.Close

End Sub
ADOX
Sub ADOCreateIndex()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

Dim idx As New ADOX.Index

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

Set tbl = cat.Tables("Employees")

'Create Index object append table columns to it.

idx.Name = "CountryIndex"

idx.Columns.Append "Country"

'Allow Null values to be added in the index field

idx.IndexNulls = adIndexNullsAllow

'Append the Index object to the Indexes collection of Table

tbl.Indexes.Append idx

Set cat = Nothing

End Sub

The process for creating an index is the same in ADO and DAO. Create the index, append columns to the index, and then append the index to the table. However, there are some differences in behavior between the Index objects in these two models. DAO has two properties, Required and IgnoreNulls, that together determine whether or not Null values can be inserted for fields in the index and whether or not index entries will be created when some of the fields in a multi-column index contain Null. By default, both of these properties are False, indicating that Null values are allowed in the index and that an index entry will be added. This differs from ADO, which has a single property, IndexNulls for this purpose. By default, the IndexNulls property is adIndexNullsDisallow that indicates that Null values are not allowed in the index and that no index entry will be added if a field in the index contains Null.

The table below shows the mapping between the DAO Required and IgnoreNulls properties to the ADOX IndexNulls property.

	PRIVATE
DAO Required
	DAO IgnoreNulls
	ADOX IndexNulls
	Description

	True
	False
	adIndexNullsDisallow
	A Null value isn't allowed in the index field; no index entry added.

	False
	True
	adIndexNullsIgnore
	A Null value is allowed in the index field; no index entry added.

	False
	False
	adIndexNullsAllow
	A Null value is allowed in the index field; index entry added.

Note that ADO defines an additional value for the IndexNulls property, adIndexNullsIgnoreAny, that is not listed in the table above. The Jet Provider does not support this type of index. Setting IgnoreNulls to adIndexNullsIgnoreAny when using the Jet Provider will result in a run-time error. The purpose of adIndexNullsIgnoreAny, if it was to be supported by a provider, is to ignore an entry if any column of a multi-column index contains a Null value.

Defining Keys and Relationships
Content coming soon.
Creating a Primary Key
A table often has a column or combination of columns whose values uniquely identify a row in a table. This column (or combination of columns) is called the primary key of the table. When you define a primary key, the Microsoft Jet database engine will create an index to enforce the uniqueness of the key.

Using the Contacts table created in previous examples, the following listings demonstrate how to make the ContactId column the primary key.

DAO
Sub DAOCreatePrimaryKey()

Dim db As DAO.Database

Dim tbl As DAO.TableDef

Dim idx As DAO.Index

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

Set tbl = db.TableDefs("Contacts")

'Create the Primary Key and append table columns to it.

Set idx = tbl.CreateIndex("PrimaryKey")

idx.Primary = True

idx.Fields.Append idx.CreateField("ContactId")

'Append the Index object to the Indexes collection of the TableDef.

tbl.Indexes.Append idx

db.Close

End Sub
ADOX
Sub ADOCreatePrimaryKey()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

Dim pk As New ADOX.Key

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

Set tbl = cat.Tables("Contacts")

' Create the Primary Key and append table columns to it.

pk.Name = "PrimaryKey"

pk.Type = adKeyPrimary

pk.Columns.Append "ContactId"

'Append the Key object to the Keys collection of Table

tbl.Keys.Append pk

Set cat = Nothing

End Sub

With DAO, the Index object is used to create primary keys. The key is created much like any other index except that the Primary property is set to True. ADO, however, has a Key object that is used to create new keys. The steps in creating a key are similar to creating an index. However, when creating a Key, you must specify the type of Key you want to create. In this case, the key type is adKeyPrimary which indicates that you want to create a primary key.

Alternatively, the ADOX code to create and append the key could have been written in a single line of code. The following code:

'Create the Primary Key and append table columns to it.

pk.Name = "PrimaryKey"

pk.Type = adKeyPrimary

pk.Columns.Append "ContactId"

'Append the Key object to the Keys collection of Table

tbl.Keys.Append pk
is equivalent to:
'Append the Key object to the Keys collection of Table

tbl.Keys.Append "PrimaryKey", adKeyPrimary, "ContactId"

Creating One-to-Many Relationships (Foreign Keys)
One-to-many relationships between tables (where the primary key value in the primary table may appear in multiple rows in the foreign table) are established by creating foreign keys. A foreign key is a column or combination of columns whose values match the primary key of another table. Unlike a primary key, a foreign key does not have to be unique.

DAO
Sub DAOCreateForeignKey()

Dim db As DAO.Database

Dim rel As DAO.Relation

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'This key already exists in the Northwind database.

'For the purposes of this example, we're going to

'delete it and then recreate it

db.Relations.Delete "CategoriesProducts"

'Create the relation

Set rel = db.CreateRelation()

rel.Name = "CategoriesProducts"

rel.Table = "Categories"

rel.ForeignTable = "Products"

'Create the field the tables are related on

Set fld = rel.CreateField("CategoryId")

'Set ForeignName property of the field to the name of

'the corresponding field in the primary table

fld.ForeignName = "CategoryId"

rel.Fields.Append fld

'Append the relation to the collection

db.Relations.Append rel

End Sub
ADO
Sub ADOCreateForeignKey()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

Dim fk As New ADOX.Key

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Get the table for the foreign side of the relationship

Set tbl = cat.Tables("Products")

' This key already exists in the Northwind database.

'For the purposes of this example, we're going to

'delete it and then recreate it

tbl.Keys.Delete "CategoriesProducts"

'Create the Foreign Key

fk.Name = "CategoriesProducts"

fk.Type = adKeyForeign

fk.RelatedTable = "Categories"

'Append column(s) in the foreign table to it

fk.Columns.Append "CategoryId"

'Set RelatedColumn property to the name of the corresponding

'column in the primary table

fk.Columns("CategoryId").RelatedColumn = "CategoryId"

'Append the Key object to the Keys collection of Table

tbl.Keys.Append fk

Set cat = Nothing

End Sub

Alternatively, the ADOX code to create and append the key could have been written in a single line of code. The following code:

'Create the Foreign Key

fk.Name = "CategoriesProducts"

fk.Type = adKeyForeign

fk.RelatedTable = "Categories"

'Append column(s) in the foreign table to it

fk.Columns.Append "CategoryId"

'Set RelatedColumn property to the name of the corresponding

'column in the primary table

fk.Columns("CategoryId").RelatedColumn = "CategoryId"

'Append the Key object to the Keys collection of Table

tbl.Keys.Append fk

is equivalent to:
tbl.Keys.Append "CategoriesProducts", adKeyForeign, "CategoryId", _ "Categories", "CategoryId"

Enforcing Referential Integrity
Referential integrity preserves the defined relationships between tables when records are added, updated, or deleted. Maintaining referential integrity within your database requires that there be no references to nonexistent values, and that if a key value changes, all references to it change consistently throughout the database.

When you enforce referential integrity users are prevented from adding new records to a related table when there is no associated record in the primary table, changing primary key values that would result in "orphaned" records in the related table, or deleting records in the primary table when there are associated records in the related table.

By default, Microsoft Jet enforces relationships created by DAO or ADOX. A trappable error will occur if you make changes that violate referential integrity. When defining a new relationship, you can also specify that Microsoft Jet should cascade updates or deletes. With cascading updates, when a change is made to the primary key in a record in the primary table, Microsoft Jet will automatically update the foreign key in all related records in the related foreign table or tables. Similarly with cascading deletes, when a record is deleted from the primary table, Microsoft Jet will automatically delete all related records in the related foreign table or tables.

In the following example, the code from the preceding section is modified to create a foreign key that supports cascading updates and deletes.

DAO
Sub DAOCreateForeignKeyCascade()

Dim db As DAO.Database

Dim rel As DAO.Relation

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'This key already exists in the Northwind database.

'For the purposes of this example, we're going to

'delete it and then recreate it

db.Relations.Delete "CategoriesProducts"

'Create the relation

Set rel = db.CreateRelation()

rel.Name = "CategoriesProducts"

rel.Table = "Categories"

rel.ForeignTable = "Products"

'Specify cascading updates and deletes

rel.Attributes = dbRelationUpdateCascade Or dbRelationDeleteCascade

'Create the field the tables are related on

Set fld = rel.CreateField("CategoryId")

'Set ForeignName property of the field to the name of

'the corresponding field in the primary table

fld.ForeignName = "CategoryId"

rel.Fields.Append fld

'Append the relation to the collection

db.Relations.Append rel

End Sub
ADOX
Sub ADOCreateForeignKeyCascade()

Dim cat As New ADOX.Catalog

Dim tbl As ADOX.Table

Dim fk As New ADOX.Key

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Get the table for the foreign side of the relationship

Set tbl = cat.Tables("Products")

' This key already exists in the Northwind database.

'For the purposes of this example, we're going to

'delete it and then recreate it

tbl.Keys.Delete "CategoriesProducts"

'Create the Foreign Key

fk.Name = "CategoriesProducts"

fk.Type = adKeyForeign

fk.RelatedTable = "Categories"

'Specify cascading updates and deletes

fk.UpdateRule = adRICascade

fk.DeleteRule = adRICascade

'Append column(s) in the foreign table to it

fk.Columns.Append "CategoryId"

'Set RelatedColumn property to the name of the corresponding

'column in the primary table

fk.Columns("CategoryId").RelatedColumn = "CategoryId"

'Append the Key object to the Keys collection of Table

tbl.Keys.Append fk

Set cat = Nothing

End Sub

The following table shows how the values for the DAO Attributes property of a Relation object map to properties of the ADOX Key object.
Note

The following values for the DAO Attributes property of a Relation object have no corresponding properties in ADOX: dbRelationDontEnforce, dbRelationInherited, dbRelationLeft, dbRelationRight.

	PRIVATE
DAO Relation Object Property
	Value
	ADOX Key Object Property
	Value

	Attributes
	dbRelationUnique
	Type
	adKeyUnique

	Attributes
	dbRelationUpdateCascade
	UpdateRule
	adRICascade

	Attributes
	dbRelationDeleteCascade
	DeleteRule
	adRICascade

Creating and Modifying Queries
As discussed in the section, "Executing Queries" the ADO Command object is similar to the DAO QueryDef object in that it specifies an SQL string and parameters and executes the query. However, unlike the DAO QueryDef object, the ADO Command object cannot be used directly to persist a query. By specifying a name for the QueryDef when it is created, the DAO QueryDef is automatically appended to the QueryDefs collection and persisted in the database. This differs from ADO in which all Command objects are temporary queries. You must explicitly append the Command to the ADOX Procedures or Views collection in order to persist it in the database.

The Jet Provider defines Microsoft Jet queries as Views if the query is a row-returning, non-parameterized query. The provider defines a procedure as either a non row-returning query (a bulk operation) or a parameterized row-returning query.
Creating a Stored Query
The following listings demonstrate how to create a row returning, non-parameterized query.

DAO
Sub DAOCreateQuery()

Dim db As DAO.Database

Dim qry As DAO.QueryDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create query

Set qry = db.CreateQueryDef("AllCategories", _

"SELECT * FROM Categories") db.Close

End Sub
ADOX
Sub ADOCreateQuery()

Dim cat As New ADOX.Catalog

Dim cmd As New ADODB.Command

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Create the query

cmd.CommandText = "Select * FROM Categories"

cat.Views.Append "AllCategories", cmd

Set cat = Nothing

End Sub

In this example, because the SQL statement is a non-parameterized, row-returning query, the ADO Command object is appended to the ADOX Views collection. Note, that when using the Jet Provider, it is possible to append a Command object to either the Views or Procedures collection regardless of the type of query that is being created. However, if a query such as the one in this example is appended to the Procedures collection, then the Procedures and Views collections are refreshed, you'll notice that the query is no longer in the Procedures collection, but is now in the Views collection.

Likewise, you can append a parameterized query, or a non row-returning bulk operation query to either the Views or Procedures collection. However, ADOX will actually store these types of queries in the Procedures collection. If you append to the Views collection, then refresh both the Views and Procedures collections, you'll find that the newly appended query is now in the Procedures collection.
Creating a Parameterized Stored Query
The following listings demonstrate how to create a parameterized query and save it in the database.

DAO
Sub DAOCreateParameterizedQuery()

Dim db As DAO.Database

Dim qry As DAO.QueryDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create query

Set qry = db.CreateQueryDef("Employees by Region", _

"Parameters [prmRegion] Text(255);" & _

"Select * from Employees where Region = [prmRegion]")

db.Close

End Sub
ADOX
Sub ADOCreateParameterizedQuery()

Dim cat As New ADOX.Catalog

Dim cmd As New ADODB.Command

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Create the Command

cmd.CommandText = "Parameters [prmRegion] Text(255);" & _

"Select * from Employees where Region = [prmRegion]"

'Create the Procedure

cat.Procedures.Append "Employees by Region", cmd

Set cat = Nothing

End Sub

The code for creating a parameterized query is very similar using DAO and ADOX. Note, though that although the ADO Command object allows you to create parameters using the CreateParameter method, this information will not be saved when creating or updating a Procedure. You must specify the parameters as part of the SQL string.

Also note that Microsoft Jet will interpret the SQL statement differently when a query is created with ADOX and the Jet Provider rather than DAO. The Jet Provider always sets a Microsoft Jet database engine option for ANSI compliance. This may cause differences in behavior between DAO and ADO when creating or executing queries. For example, if the SQL statement in the code above had been written as follows:

"Parameters [prmRegion] Text;" & _

"Select * from Employees where Region = [prmRegion]"

omitting the (255) after the Text keyword, the parameter would be created as a text field (dbText, adVarWChar) when using DAO, but as a memo field (dbMemo, adLongVarWChar) when using ADO.

Further, some SQL statements that execute when using DAO will fail to execute when using ADO due to additional reserved words. For a list of reserved words, see "Appendix D: Microsoft Jet 4.0 ANSI Reserved Words."
Modifying a Stored Query
The following listings demonstrate how to modify an existing query.

DAO
Sub DAOModifyQuery()

Dim db As DAO.Database

Dim qry As DAO.QueryDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Get the query

Set qry = db.QueryDefs("Employees by Region")

'Update the SQL and save the updated query

qry.SQL = "Parameters [prmRegion] Text(255);" & _

"Select * from Employees where Region = [prmRegion] ORDER BY City"

db.Close

End Sub
ADO
Sub ADOModifyQuery()

Dim cat As New ADOX.Catalog

Dim cmd As ADODB.Command

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Get the query

Set cmd = cat.Procedures("Employees by Region").Command

'Update the SQL

cmd.CommandText = "Parameters [prmRegion] Text(255);" & _

"Select * from Employees where Region = [prmRegion] ORDER BY City"

'Save the updated query

Set cat.Procedures("Employees by Region").Command = cmd

Set cat = Nothing

End Sub

In the ADO code, setting the Procedure object's Command property to the modified Command object saves the changes. If this last step were not included, the changes would not have been persisted to the database. This difference results from the fact that ADO Command objects are designed as temporary queries while DAO QueryDef objects are designed as saved queries. You need to be aware of this when working with Commands, Procedures, and Views. You may think that the following ADO code examples are equivalent:

Set cmd = cat.Procedures("Employees by Region").Command

cmd.CommandText = "Parameters [prmRegion] Text;" & _

"Select * from Employees where Region = [prmRegion] ORDER BY City"

Set cat.Procedures("Employees by Region").Command = cmd
and
cat.Procedures("Employees by Region").CommandText = _

"Parameters [prmRegion] Text;" & _

"Select * from Employees where Region = [prmRegion] ORDER BY City"

However, they are not. Both will compile, but the second piece of code will not actually update the query in the database. In the second example, ADOX will create a tear-off command object and hand it back to Visual Basic for Applications. Visual Basic for Applications will then ask ADOX to update the CommandText property, which it does. Finally, Visual Basic for Applications moves to execute the next line of code and the Command object is lost. ADOX is never asked to update the Procedure with the changes to the modified Command object.

Creating an SQL Pass-Through Query
SQL pass-through queries are SQL statements that are sent directly to the database server without interpretation by the Microsoft Jet database engine. When creating an SQL pass-through query, you must specify the SQL statement to execute as well as an ODBC connection string.

With DAO, pass-through queries provide a means of improving performance when accessing external ODBC data. With ADO, it is not necessary to create SQL pass-through queries in your Microsoft Jet database in order to have good performance when accessing external data. With ADO, you can use the Microsoft OLE DB Provider for SQL Server to directly access SQL Server without the overhead of Microsoft Jet or ODBC. You can also use the Microsoft OLE DB Provider for ODBC to access data in any ODBC data source.

While it is no longer necessary to create SQL pass-through queries in your Microsoft Jet database, it is still possible to do so using ADOX and the Jet Provider. The following code demonstrates how to create an SQL pass-through query.

DAO
Sub DAOCreateSQLPassThrough()

Dim db As DAO.Database

Dim qry As DAO.QueryDef

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

'Create query

Set qry = db.CreateQueryDef("Business Books", _

"Select * From Titles where Type = 'business'")

qry.Connect = "ODBC;DSN=alyssa1;UID=sa;PWD=;"

qry.ReturnsRecords = True

db.Close

End Sub
ADOX
Sub ADOCreateSQLPassThrough()

Dim cat As New ADOX.Catalog

Dim cmd As New ADODB.Command

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Create the Command

Set cmd.ActiveConnection = cat.ActiveConnection

cmd.CommandText = "Select * From Titles where Type = 'business'"

cmd.Properties("Jet OLEDB:ODBC Pass-Through Statement") = True

cmd.Properties("Jet OLEDB:Pass Through Query Connect String") = _

"ODBC;DSN=alyssa1;database=pubs;UID=sa;PWD=;"

'Create the Procedure

cat.Procedures.Append "Business Books", cmd

Set cat = Nothing

End Sub

Security
Microsoft Jet databases can be secured in one of two ways: share-level security or user-level security. For share-level security, the database is secured with a password. Anyone attempting to open the database must specify the correct database password. For user-level security, each user is given a user name and password to open the database.
Changing a Password
The first step in securing a Microsoft Jet database is to change the password for the Admin user, if using user-level security, or changing the database password if using share-level security. When changing a password for a user or database, you must supply both the existing and new passwords. When changing the database or Admin user's password for the first time, use an empty string ("") as the existing password.

The following code shows how to enable user level security by setting the password for the Admin user to "password".

DAO
Sub DAOChangePassword()

Dim wks As Workspace

Dim usr As DAO.User

'Open the workspace, specifying the system database to use

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "")

'Change the password for the user Admin

wks.Users("Admin").NewPassword "", "password"

End Sub
ADOX
Sub ADOChangePassword()

Dim cat As New ADOX.Catalog

'Open the catalog, specifying the system database to use

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;Jet OLEDB:System database=C:\sysdb.mdw"

'Change the password for the user Admin

cat.Users("Admin").ChangePassword "", "password"

End Sub

DAO and ADOX both have a method on the User object to change the user's password. The method takes the user's current password and the new password as parameters. In DAO this method is called NewPassword while in ADOX it is called ChangePassword.
Note

The Jet Provider will not error on the line of code that opens the catalog if the system database specified is incorrect. However, it will error when attempting to change the password or perform any other security related operations with the following error if the system database was not correctly specified: "The operation requested by the application is not supported by the provider."

The following code shows how to change the database password for enabling security at the share level.

DAO
Sub DAOChangeDatabasePassword()

'Make sure there isn't already a file with the

'name of the compacted database.

If Dir("c:\newnwind.mdb") <> "" Then _

Kill "c:\newnwind.mdb"

'Basic compact - creating new database named newnwind

DBEngine.CompactDatabase "C:\nwind.mdb", "C:\newnwind.mdb", _

, , ";pwd=password;"

'Delete the original database

Kill "c:\nwind.mdb"

'Rename the file back to the original name

Name "c:\newnwind.mdb" As "c:\nwind.mdb"

End Sub
JRO
Sub JROChangeDatabasePassword()

Dim je As New JRO.JetEngine

' Make sure there isn't already a file with the

'name of the compacted database.

If Dir("c:\newnwind.mdb") <> "" Then _

Kill "c:\newnwind.mdb"

'Compact the database specifying the new database password

je.CompactDatabase "Data Source=C:\nwind.mdb;", _

"Data Source=C:\newnwind.mdb;" & _

"Jet OLEDB:Database Password=password"

' Delete the original database

Kill "c:\nwind.mdb"

'Rename the file back to the original name

Name "c:\newnwind.mdb" As "c:\nwind.mdb" End Sub

Note

JRO, not ADOX, is used to change a database password at share level.

Both DAO and JRO allow you to change the database password when compacting the database. The syntax is slightly different: in DAO, specify ";pwd=password;" in the Password parameter of CompactDatabase. In JRO, specify the provider-specific "Jet OLEDB:Database Password=password" in the destination connection parameter of CompactDatabase.

Alternatively, the DAO code could be rewritten to use the NewPassword method of the Database object.

Sub DAOChangeDatabasePassword2()

Dim db As DAO.Database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb", True)

db.NewPassword "", "password"

db.Close

End Sub

A similar mechanism is not currently available in JRO or ADOX. You must use the CompactDatabase method in order to change the database password.

Creating Users and Groups
A User object represents a user account that has specific access permissions while a Group object represents a group of user accounts that have common access permissions. Creating users and groups allows you to easily control and maintain users' access to the database and objects within the database.

The following code example shows how to create a new user.

DAO
Sub DAOCreateUser()

Dim wks As DAO.Workspace

'Open a workspace

DBEngine.SystemDB = "c:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

'Create the user and append it to the Users collection

wks.Users.Append wks.CreateUser("NewUser", "xNewUser", "password")

End Sub
ADOX
Sub ADOCreateUser()

Dim cat As New ADOX.Catalog

'Open the catalog, specifying the system database to use

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;" & _

"Jet OLEDB:System database=C:\sysdb.mdw;" & _

"User Id=Admin;Password=password;"

'Create the new user and append it to the users collection

cat.Users.Append "NewUser", "password" End Sub

Unlike with DAO, with ADOX you do not have to create a User object before adding the user to the database with the Append method. With ADOX you can create a new user simply by passing the name and password to the Append method of the Users collection. Note that there is an additional parameter, PID, supplied when creating a user in DAO. This parameter is not required when creating a new user in ADOX because the Jet Provider automatically generates PID values.

Adding a User to a Group
Adding users to a group makes maintaining permissions easier. Because users within a group inherit the permissions of the group you can set permissions once and have it apply to an entire group of users. For example, you can assign update permissions for the Salary table to all managers by simply granting the Managers group update permission.

The following code example demonstrates how to create a new group and add an existing user to that group.
DAO
Sub DAOAddUserToNewGroup()

Dim wks As DAO.Workspace

'Open the workspace

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

'Create a new group

wks.Groups.Append wks.CreateGroup("NewGroup", "xNewGroup")

'Add the user to the new group

wks.Users("MyUser").Groups.Append _

wks.Users("MyUser").CreateGroup("NewGroup")

End Sub
ADOX
Sub ADOAddUserToNewGroup()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Create a new group

cat.Groups.Append "NewGroup"

'Add the user to the new group

cat.Users("MyUser").Groups.Append "NewGroup"

End Sub

Both DAO and ADOX have a Groups collection on the Users object that can be used to add the user to a group as well as to determine what groups the user belongs to. However, note that with DAO you must recreate the group using the User object's CreateGroup method before appending the Group to the User object's Groups collection. With ADOX it is neither necessary nor valid to recreate the group; just append the name of the group to the User object's Groups collection.

Setting Permissions
By setting permissions you can control a user's access to an object. For example, you can allow one user to read an object's contents, but not change them. Permissions can be set for a specific user or an entire group of users. When permissions are set for a group, every user in that group inherits those permissions.

In the example below, the user created in the section, "Creating Users and Groups" is granted permissions to read, insert, update, and delete data.

DAO
Sub DAOSetUserObjectPermissions()

Dim db As DAO.Database

Dim wks As DAO.Workspace

Dim doc As DAO.Document

'Open the database

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Set permissions for MyUser on the Customers table

Set doc = db.Containers("Tables").Documents("Customers")

doc.UserName = "MyUser"

doc.Permissions = dbSecRetrieveData Or dbSecInsertData _

Or dbSecReplaceData Or dbSecDeleteData

End Sub
ADOX
Sub ADOSetUserObjectPermissions()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Set permissions for MyUser on the Customers table

cat.Users("MyUser").SetPermissions "Customers", adPermObjTable, _

adAccessSet, adRightRead Or adRightInsert Or adRightUpdate _

Or adRightDelete

End Sub

The process for setting permissions with ADOX is essentially the inverse of the DAO process. With DAO, you first select the object and then indicate the user for whom to set permissions. With ADOX, you first select the user and then specify the object on which to set permissions.

In addition, with DAO you set a series of properties in order to set permissions on an object. In the example above, you set the UserName property followed by the Permissions property. With ADOX, a single method, SetPermissions, is used to set permissions on an object. The SetPermissions method has parameters that map to the properties used in DAO.

With the DAO Permissions property, which maps to the Rights parameter of the ADOX SetPermissions method, you supply a constant or combination of constants that represent the permissions to set. The table below shows how the DAO Security constants map to the ADOX Rights constants.

	PRIVATE
DAO
	ADOX

	dbSecNoAccess
	adRightNone

	dbSecFullAccess
	adRightFull

	dbSecDelete
	adRightDrop

	dbSecReadSec
	adRightReadPermissions

	dbSecWriteSec
	adRightWritePermissions

	dbSecWriteOwner
	adRightWriteOwner

	dbSecCreate
	adRightCreate

	dbSecReadDef
	adRightReadDesign

	dbSecWriteDef
	adRightWriteDesign

	dbSecRetrieveData
	adRightRead

	dbSecInsertData
	adRightInsert

	dbSecReplaceData
	adRightUpdate

	dbSecDeleteData
	adRightDelete

	dbSecDBAdmin
	adRightFull

	dbSecDBCreate
	adRightCreate

	dbSecDBExclusive
	adRightExclusive

	dbSecDBOpen
	adRightExecute

As shown in the table above, DAO has specific security constants for setting permissions on a database. These constants are used with the Databases container or a database object. In the following listings, you can see how to use both DAO and ADOX to set permissions for a user on a database object.

DAO
Sub DAOSetDatabasePermissions()

Dim db As DAO.Database

Dim wks As DAO.Workspace

Dim doc As DAO.Document

'Open the database

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Set permissions for MyUser on the Customers table

Set doc = db.Containers("Databases").Documents("MSysDB")

doc.UserName = "MyUser"

doc.Permissions = dbSecDBExclusive

End Sub
ADOX
Sub ADOSetDatabasePermissions()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Set permissions for MyUser on the Customers table

cat.Users("MyUser").SetPermissions "", adPermObjDatabase, _

adAccessSet, adRightExclusive

End Sub
Setting permissions for a database differs slightly from other objects. When using DAO, you must specify "MSysDb" as the document name when you want to specify permissions for the current database. To do the equivalent in ADOX, specify an empty string ("") as the name of the database.

In addition to granting permissions to a user on specific objects you may also want to specify permissions for a class/container of objects such as Tables. When specifying permissions on a container, you can indicate whether or not new objects of that class created by the user should inherit those permissions by default.

DAO
Sub DAOSetUserContainerPermissions()

Dim db As DAO.Database

Dim wks As DAO.Workspace

Dim ctr As DAO.Container

'Open the database

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Set permissions for MyUser on the Tables Container

Set ctr = db.Containers("Tables")

ctr.UserName = "MyUser"

ctr.Inherit = True

ctr.Permissions = dbSecRetrieveData Or dbSecInsertData _

Or dbSecReplaceData Or dbSecDeleteData

End Sub
ADOX
Sub ADOSetUserContainerPermissions()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Set permissions for MyUser on the Tables Container

cat.Users("MyUser").SetPermissions Null, adPermObjTable, _

adAccessSet, adRightRead Or adRightInsert Or adRightUpdate _

Or adRightDelete, adInheritBoth

End Sub

With DAO, the Container object was used to specify permissions for a class of objects. With ADOX, setting the Name parameter of the SetPermissions object to Null sets permissions for the class of objects specified by the ObjectType parameter. The InheritType parameter of the ADOX SetPermissions method indicates whether or not new objects should inherit the permissions. This is equivalent to setting the DAO Inherit property to True.

When using DAO within Microsoft Access, you can also set permissions on Access-specific objects. Like the Microsoft Jet objects, these objects are represented by Containers and Documents.

ADOX, using the Jet Provider, also supports setting permissions for Access-specific objects. The ObjectType and ObjectTypeId parameters of the SetPermissions method are used to specify which Access object you want to set permissions on.

DAO
Sub DAOSetMSAccessObjectPermissions()

Dim db As DAO.Database

Dim wks As DAO.Workspace

Dim doc As DAO.Document

'Open the database

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Allow the user to open the form, but not view the design

Set doc = db.Containers("Forms").Documents("Main Switchboard")

doc.UserName = "MyUser"

doc.Permissions = 256 'acSecFrmRptExecute

End Sub
ADOX
Sub ADOSetMSAccessObjectPermissions()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Allow the user to open the form, but not view the design

cat.Users("MyUser").SetPermissions "Main Switchboard", _

adPermObjProviderSpecific, adAccessSet, adRightExecute, , _

JET_SECURITY_FORMS

End Sub

In the ADOX example, the ObjectType parameter of the SetPermissions method is specified as adPermObjProviderSpecific. This indicates that you want to set permissions for an object type that ADOX doesn't inherently understand. The last parameter, ObjectTypeId, is the provider specific GUID that identifies the object, in this case Microsoft Access Forms. The Jet Provider defines the GUIDs for the Access specific objects.

The following table shows how the DAO Containers map to the GUIDs used with the ADOX ObjectTypeId parameter. It also shows the constant name that can be used if you have the Microsoft Jet OLE DB Constants text file from Appendix C.

	PRIVATE
DAO Containers
	ADOX ObjectTypeId
	JetOLEDBConstants.txt Constant

	Forms
	{c49c842e-9dcb-11d1-9f0a-00c04fc2c2e0}
	JET_SECURITY_FORMS

	Reports
	{c49c8430-9dcb-11d1-9f0a-00c04fc2c2e0}
	JET_SECURITY_REPORTS

	Macros
	{c49c842f-9dcb-11d1-9f0a-00c04fc2c2e0}
	JET_SECURITY_MACROS

	Modules
	{c49c8432-9dcb-11d1-9f0a-00c04fc2c2e0}
	JO_SECURITY_MODULES

Determining an Object's Owner
The database, and every object in the database, has an owner. By default, the owner is the user that created that object. The object owner has special priveleges for that object in that he or she can always assign or revoke permissions for that object.

The following listings demonstrate how to get the user name of the object owner.

DAO
Sub DAOGetObjectOwner()

Dim db As DAO.Database

Dim wks As DAO.Workspace

'Open the database

DBEngine.SystemDB = "C:\sysdb.mdw"

Set wks = DBEngine.CreateWorkspace("", "Admin", "password")

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Print the owner of the Customers table

Debug.Print db.Containers("Tables").Documents("Customers").Owner

End Sub
ADOX
Sub ADOGetObjectOwner()

Dim cat As New ADOX.Catalog

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;User Id=Admin;Password=password;" & _

"Jet OLEDB:System database=C:\sysdb.mdw"

'Print the owner of the Customers table

Debug.Print cat.GetObjectOwner("Customers", adPermObjTable)

End Sub

With DAO, you use the Owner property of a Document or Container object to retrieve the user name of the object owner. With ADOX, you use the GetObjectOwner method of a Catalog object. This method takes the object's name and type as parameters.

Replication
Replication enables users at different locations to easily share the changes they are making to a database. Copies of a database, called replicas, can be made and distributed to users at different locations. Users at each location can work on their local copy and then share, or synchronize, their changes with users at other locations.
Note

Use JRO, not ADO, to implement replication in your application.

Making a Database Replicable
The first step in enabling replication is to create a design master. A design master is the only replica in the replica set which can make both schema and data changes, all other replicas can only make data changes to replicated objects. Making a database replicable makes the database a design master.

The following listings demonstrate how to make an existing database replicable.

DAO
Sub MakeDesignMaster()

Dim dbsNorthwind As DAO.Database

Dim prpNew As DAO.Property

'Open database for exclusive access.

Set dbsNorthwind = DBEngine.OpenDatabase("Northwind.mdb", True)

With dbsNorthwind

' If Replicable property doesn't exist, create it.

' Turn off error handling in case property exists.

On Error Resume Next

Set prpNew = .CreateProperty("Replicable", dbText, "T")

.Properties.Append prpNew

' Set database Replicable property to True.

.Properties("Replicable") = "T"

.Close

End With

End Sub
JRO
Sub MakeDesignMaster()

Dim repMaster As New JRO.Replica

'Make the Northwind database replicable.

'If successful, this will create a connection to the

'database.

repMaster.MakeReplicable "Northwind.mdb", False

Set repMaster = Nothing

End Function

The JRO model simplifies the code for making a database replicable. To make a database replicable using DAO, the database must be opened, the Replicable property created and appended to the Properties collection of the database, and then the property set to "T". With JRO, a database can be made replicable with a single method, MakeReplicable.

The MakeReplicable method in JRO has an optional second parameter named ColumnTracking set to False in the example above. It indicates whether or not changes are tracked at the column level or row level. DAO did not expose the ability to track changes at the column level. Therefore, this parameter must be set to False if you want the same behavior as DAO. See the section, "New Features in JRO" for more information on column level tracking.

As with DAO, the process of making a database replicable using JRO cannot be reversed. It is recommended that you make a backup of your database before performing this operation.

Making Objects Local or Replicable
By default, when a database is made replicable all objects in that database will be replicated. If you do not want an object replicated you must indicate that the object should not be replicated (that is, it should remain local) before you make the database replicable.

In contrast, when you create a new table, query, form, report, macro, or module at a replica, the object is considered local and is stored only at that replica. If you want users at other replicas to be able to use the object, you must make it replicable.

This following listings demonstrate how to indicate that an object should be kept local when the database is made replicable.

DAO
Sub KeepObjectLocal()

Dim dbsNorthwind As DAO.Database

Dim docTemp As DAO.Document

Dim prpTemp As DAO.Property

Set dbsNorthwind = DBEngine.OpenDatabase("Northwind.mdb")

Set docTemp = dbsNorthwind.Containers("Modules"). _

Documents("Utility Functions")

Set prpTemp = doc.CreateProperty("KeepLocal", dbText, "T")

docTemp.Properties.Append prpTemp

dbsNorthwind.Close

End Sub
JRO
Sub KeepObjectLocal()

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "Northwind.mdb"

repMaster.SetObjectReplicability "Utility Functions", "Modules", False

Set repMaster = Nothing

End Sub
This next example shows how to make a new object in a replica replicable.

DAO
Sub MakeObjectReplicable(strTable As Table)

Dim dbsNorthwind As DAO.Database

Dim tdfTemp AS DAO.TableDef

Set dbsNorthwind = DBEngine.OpenDatabase("Northwind.mdb")

Set tdfTemp = dbsNorthwind.TableDefs(strTable)

On Error GoTo ErrHandler

tdfTemp.Properties("Replicable") = "T"

On Error GoTo 0

dbsNorthwind.Close

Exit Sub

ErrHandler:

Dim prpNew As Property

If Err.Number = 3270 Then

Set prpNew = tdfTemp.CreateProperty("Replicable", dbText, "T")

tdfTemp.Properties.Append prpNew

Else

MsgBox "Error " & Err & ": " & Error

End If

End Sub
JRO
Sub MakeObjectReplicable(strTable As String)

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "Northwind.mdb"

repMaster.SetObjectReplicability strTable, "Tables", True

Set repMaster = Nothing

End Sub
With DAO, two properties, Replicable and KeepLocal determine whether or not an object is or will be replicated. Use the KeepLocal property prior to making the database replicable to indicate that the object should not be made replicable when the database is made replicable. Use the Replicable property after the database is made replicable to indicate whether or not the object should be replicated. DAO requires you to create the properties using the CreateProperty method of the object's Properties collection before you can set them.

With JRO, the GetObjectReplicability and SetObjectReplicability methods are used, both before and after the database is made replicable, to determine or set whether the object is or will be replicated. The method takes the name of the object you wish to get or set replicability for, the type of the object, and a Boolean value that indicates whether it should be kept local or made replicable.

The following pseudocode is the algorithm for mapping the DAO KeepLocal and Replicable properties to the ADO ObjectReplicability.

If DAO.Database.Replicable = 'T'

If DAO.Object.Replicable = 'T'

JRO.ObjectReplicability = True

Else

JRO.ObjectReplicability = False

Else

If DAO.Object.KeepLocal = 'T'

JRO.ObjectReplicability = False

Else

JRO.ObjectReplicability = True

Creating a Replica
The following listings demonstrate how to create a full, read/write replica of an existing replica using DAO and then using JRO.

DAO
Function MakeAdditionalReplica(strReplicableDB As String, _

strNewReplica AS String) As Integer

Dim dbsTemp As DAO.Database

Set dbsTemp = DBEngine.OpenDatabase(strReplicableDB)

dbsTemp.MakeReplica strNewReplica, "Replica of " & _

strReplicableDB

dbsTemp.Close

End Function
JRO
Function MakeAdditionalReplica(strReplicableDB As String, _

strNewReplica As String) As Integer

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = strReplicableDB

repMaster.CreateReplica strNewReplica, "Replica of " & _

strReplicableDB

Set repMaster = Nothing

End Function

The code for creating a replica with JRO is similar to the DAO code. Both examples begin with opening or connecting to the design master. In DAO, the design master is opened with the DBEngine object's OpenDatabase method. In ADO, setting the Replica object's ActiveConnection property opens the design master. Once it is open, the new replica is creating by calling a method to create the replica. The JRO equivalent to the DAO MakeReplica method is CreateReplica.

The DAO MakeReplica method has an optional parameter named Options. This parameter allows you to indicate the type of replica to create: full or partial, read-only or read/write.

In JRO there are two optional parameters named Type and Updatability. The Type parameter allows the user to indicate whether the replica should be full or partial. The Updatability parameter allows the user to indicate whether the replica is read-only or fully updatable.

The following table shows how the optional parameters and constants for the DAO MakeReplica method map to those for the JRO CreateReplica method.

	PRIVATE
DAO Parameter
	DAO Constant
	JRO Parameter
	JRO Constant

	Options
	dbRepMakePartial
	Type
	jrRepTypePartial

	Options
	dbRepMakeReadOnly
	Updatability
	jrRepUpdReadOnly

The JRO CreateReplica method has two additional, optional parameters named Visibility and Priority. These parameters are omitted in the JRO code example above indicating that the default value should be used. Visibility and Priority are new in JRO and provide additional control over how synchronizations with the replica will be performed. The default value for each of these parameters maps to the DAO behavior. See the section, "New Features in JRO" for more information about replica visibility and priority.

Creating a Partial Replica
Sometimes, it is necessary to create replicas that contain a subset of the data contained in another replica. For example, a business might store its entire sales database at the headquarters office but replicate only regional data to its regional offices across the country. You can create a separate replica for each regional office that contains only the data relating to that region. The database at the headquarters office would be a full replica, with which each partial replica would be synchronized.

There are two ways to filter the data in a partial replica. The first method is by an expression, similar to an SQL WHERE clause (without the word WHERE). With an expression-based filter, the records in the table are limited to those that satisfy the expression. The second method to filter data is with a relationship filter. Relationship filters allow you to enforce the relationship when replicating data. It is generally used in conjunction with an expression-based filter.

The following listings demonstrate how to create a new partial replica and then populate the data in the partial replica limited by both an expression based filter and a relationship based filter.

DAO
Sub CreatePartial()

Dim dbsFull As DAO.Database

Dim dbsPartial As DAO.Database

Dim tdfCustomers As DAO.TableDef

Dim relCustOrders As DAO.Relation

'Create partial replica.

Set dbsFull = DBEngine.OpenDatabase("Northwind.mdb")

dbsFull.MakeReplica "C:\SALES\FY96.MDB", "Partial Sales Replica", _

dbRepMakePartial

dbsFull.Close

'Create an expression based filter in the partial replica.

Set dbsPartial = DBEngine.OpenDatabase("C:\SALES\FY96.MDB", True)

Set tdfCustomers = dbsPartial.TableDefs("Customers")

tdfCustomers.ReplicaFilter = "Region = 'CA'"

'Create a filter based on a relationship in the partial replica.

Set relCustOrders = dbsPartial.Relations("CustomersOrders")

relCustOrders.PartialReplica = True

'Repopulate the partial replica based on the filters.

dbsPartial.PopulatePartial "Northwind.mdb"

dbsPartial.Close

End Sub
JRO
Sub CreatePartial()

Dim repFull As New JRO.Replica

Dim repPartial As New JRO.Replica

'Create partial replica.

repFull.ActiveConnection = "Northwind.mdb"

repFull.CreateReplica "C:\SALES\FY96.MDB", "Partial Sales Replica", _

jrRepTypePartial

Set repFull = Nothing

'Create an expression based filter in the partial replica.

repPartial.ActiveConnection = "C:\SALES\FY96.MDB"

repPartial.Filters.Append "Customers", jrFilterTypeTable, _

"Region = 'CA'"

'Create a filter based on a relationship in the partial replica.

repPartial.Filters.Append "Orders", jrFilterTypeRelationship, _

"CustomersOrders"

'Repopulate the partial replica based on the filters.

repPartial.PopulatePartial "Northwind.mdb"

Set repPartial = Nothing

End Sub

The process for creating a partial replica is the same in JRO as it is in DAO. With both models the process is as follows: create the partial replica, create the filter(s), populate the partial replica using the filters. The primary difference between the two models is in creating the filters. DAO exposes properties of the Table and Relation objects for creating filters. JRO has a Filters collection. Use the Filters collection Append method to create new filters.

Listing Filters
The following listings demonstrate how to list all of the filters for a partial replica.

DAO
Sub DAOListFilters()

Dim dbPartial As DAO.Database

Dim tbl As DAO.TableDef

Dim rel As DAO.Relation

Set dbPartial = DBEngine.OpenDatabase("C:\SalesFY96.mdb")

For Each tbl In dbPartial.TableDefs

If tbl.ReplicaFilter <> "" Then Debug.Print tbl.Name & " : " & "Table Filter" & " : " & _ tbl.ReplicaFilter

End If

Next

For Each rel In dbPartial.Relations

If rel.PartialReplica <> "" Then Debug.Print rel.Name & " : " & "Relationship Filter"

End If

Next

dbPartial.Close

End Sub
JRO
Sub ListFilters()

Dim repPartial As New JRO.Replica

Dim flt As JRO.Filter

Dim strFilterType As String

repPartial.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\SalesFY96.mdb"

For Each flt In repPartial.Filters

If flt.FilterType = jrFilterTypeTable Then strFilterType = "Table Filter"

Else strFilterType = "Relationship Filter"

End If

Debug.Print flt.TableName & " : " & strFilterType & " : " & _ flt.FilterCriteria

Next Set repPartial = Nothing

End Sub

Synchronizing Data
Synchronizing two replicas involves exchanging data and design changes. Synchronization can be bi-directional, (that is, changes in each replica are propagated to the other) or can occur in a single direction.

The following listing demonstrates how to synchronize changes between two replicas. The first example shows how to do a direct, two-way synchronization.

DAO
Sub TwoWayDirectSync()

Dim dbsNorthwind As DAO.Database

Set dbsNorthwind = DBEngine.OpenDatabase("Northwind.mdb")

'Sends changes made in each replica to the other.

dbsNorthwind.Synchronize "Nwreplica.mdb", dbRepImpExpChanges

dbsNorthwind.Close

End Sub
JRO
Sub TwoWayDirectSync()

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "Northwind.mdb"

'Sends changes made in each replica to the other.

repMaster.Synchronize "Nwreplica.mdb", jrSyncTypeImpExp, _

jrSyncModeDirect

Set repMaster = Nothing

End Sub

The following example shows how to do a two-way synchronization over the Internet.
DAO
Sub InternetSync()

Dim dbsTemp As DAO.Database

Set dbsTemp = DBEngine.OpenDatabase("C:\Data\OrdEntry.mdb")

'Synchronize the local database with the replica on

'the Internet server.

dbsTemp.Synchronize "www.mycompany.myserver.com" _

& "/files/Orders.mdb", dbRepImpExpChanges + dbRepSyncInternet

dbsTemp.Close

End Sub
JRO
Sub InternetSync()

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "C:\Data\OrdEntry.mdb"

'Synchronize the local database with the replica on

'the Internet server.

repMaster.Synchronize "www.mycompany.myserver.com" _

& "/files/Orders.mdb", jrSyncTypeImpExp, jrSyncModeInternet

Set repMaster = Nothing

End Sub

The JRO and DAO code for performing a two way, direct synchronization between two replicas is similar. However, note that the JRO Synchronize method has an additional parameter that specifies jrSyncModeDirect. For functionality equivalent to DAO you must specify jrSyncModeDirect when calling the Synchronize method. In JRO, if the SyncMode parameter is omitted, the synchronization will be performed indirectly. The ability to perform indirect synchronizations is a new feature in JRO designed to increase performance when synchronizing over a Wide Area Network (WAN). See the section, "New Features in JRO" for more information about performing indirect synchronizations.

The following table shows the mapping between the DAO Exchange parameter of the Synchronize method and the JRO SyncType and SyncMode parameters.

	PRIVATE
DAO Parameter
	DAO Constant
	JRO Parameter
	JRO Constant

	Exchange
	dbRepExportChanges
	SyncType
	jrSyncTypeExport

	Exchange
	dbRepImportChanges
	SyncType
	jrSyncTypeImport

	Exchange
	dbRepImExpChanges
	SyncType
	jrSyncTypeImpExp

	Exchange
	dbRepSyncInternet
	SyncMode
	jrSyncModeInternet

Listing Synchronization Conflict Tables
If two users at two separate replicas each make a change to the same record in the database, a conflict may occur. If changes are being tracked at the row level, a conflict will occur if two users make a change to the same record. If changes are being tracked at the column level, a conflict will occur if two users make a change to the same column with a record. When a conflict occurs, the changes made by one user will fail to be applied to the other replica. Information regarding the conflict will be replicated to both replicas.

Information about the conflict is contained in a conflict table in each replica. Conflict tables contain the information that would have been placed in the table if the change had been successful. You can examine these conflict tables and work through them row by row, resolving the conflicts as appropriate.

The following listings demonstrate how to determine whether conflicts occurred during synchronization and, if conflicts did occur, how to retrieve the names of the conflict tables that were created.

DAO
Sub ConflictTables()

Dim dbsNorthwind As DAO.Database

Dim tdfTest As DAO.TableDef

Dim bConflict As Boolean

Set dbsNorthwind = DBEngine.OpenDatabase("Northwind.mdb")

bConflict = False

'Enumerate TableDefs collection and check ConflictTable

'property of each.

For Each tdfTest In dbsNorthwind.TableDefs

If tdfTest.ConflictTable <> "" Then 'There was a conflict with this table Debug.Print tdfTest.Name & " had a conflict." bConflict = True

End If

Next tdfTest

'If bConflict is still false then we didn't find any

'tables that had conflicts.

If Not bConflict Then Debug.Print "No conflicts."

dbsNorthwind.Close

End Sub
JRO
Sub ConflictTables()

Dim repMaster As New JRO.Replica

Dim rstConflicts As ADODB.Recordset

repMaster.ActiveConnection = "Northwind.mdb"

Set rstConflicts = repMaster.ConflictTables

If rstConflicts.BOF and rstConflicts.EOF Then

'There are no conflict tables so no conflicts occurred.

Debug.Print "No conflicts."

Else

While Not rstConflicts.EOF Debug.Print rstConflicts.Fields(0) & " had a conflict." rstConflicts.MoveNext

Wend

End If End Sub
With JRO, the ConflictTables property of the Replica object is used to determine which tables had conflicts. This property returns an ADO Recordset object that contains one row for each table containing conflicts. With the ConflictTables property it is easy to determine whether or not conflicts occurred. If the Recordset is empty (the BOF and EOF properties of the Recordset are both true), then no errors occurred. This differs from DAO in that with DAO you must check the ConflictTable property for each table in the TableDefs collection to determine whether conflicts occurred and what the name of the related conflict table is.

Handling Errors
There are two types of errors that can occur when executing ADO, ADOX, or JRO code: ADO errors and provider errors. ADO errors occur when you attempt to perform an invalid operation such as trying to retrieve the tenth Field from the Recordset object's Field collection when the Fields collection only contains five fields.

Provider errors are errors generated by the OLE DB provider or underlying data source. For example, specifying an invalid file name as the data source when trying to open a Microsoft Jet database will result in a provider error.

ADO errors are exposed by the run-time exception handling mechanism. In Visual Basic for Applications, an ADO error will trigger the On Error event and the Err object will contain information about the error. The ADO error will not create a new Error object in the Errors collection of the ADO Connection. OLE DB provider errors will create new Error objects in the Errors Collection of the ADO Connection.

The Error object in both DAO and ADO is unlike the error variables and functions in Visual Basic in that more than one error can be generated by a single operation. The set of Error objects in the Errors collection describes one error.

The following code attempts to open a database that doesn't exist and then displays the error(s) that result.

DAO
Sub DAODatabaseError()

On Error GoTo DAODatabaseError_Err

Dim db As DAO.Database

Dim errDB As DAO.Error

Set db = DBEngine.OpenDatabase("c:\nonexistant.mdb")

Exit Sub

DAODatabaseError_Err:

For Each errDB In DBEngine.Errors

Debug.Print "Description: " & errDB.Description

Debug.Print "Number: " & errDB.Number

Debug.Print "JetErr: " & errDB.Number

Next

End Sub
ADO
Sub ADODatabaseError()

On Error GoTo ADODatabaseError_Err

Dim cnn As New ADODB.Connection

Dim errDB As ADODB.Error

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=c:\nonexistant.mdb"

Exit Sub

ADODatabaseError_Err:

For Each errDB In cnn.Errors

Debug.Print "Description: " & errDB.Description

Debug.Print "Number: " & errDB.Number

Debug.Print "JetErr: " & errDB.SQLState

Next

End Sub

The code is very similar. Note, however, that the ADO code will print two different error numbers. The first number is the ADO/OLE DB error code. This error code will be the same for similar errors regardless of the provider being used. This allows you to write ADO applications that can handle errors even when the provider is changed. The second number is a provider-specific error code. When using the Jet Provider, this error number will be the same error number that DAO returns. However, other providers may return different numbers for this type of error.

Using Transactions
A transaction is defined as a "logical unit of work". Use transactions to enforce data integrity by making sure that multiple, related database operations are committed in an all or nothing manner. Microsoft Jet allows you to include both DML and DDL operations within a single transaction.

The following listing demonstrates how to use a transaction. It combines DML and DDL operations within a single transaction. If any part of the code fails, all changes will be rolled back. The code creates a new table named Contacts, populates it with data from the Customers table, adds a new column named ContactId to the Customers table, and then deletes the columns containing contact information from the Customers table.

DAO
Sub DAOTransactions()

On Error GoTo DAOTransactions_Err

Dim wks As DAO.Workspace

Dim db As DAO.Database

Dim tbl As DAO.TableDef

Dim bTrans As Boolean

'Get the default workspace

Set wks = DBEngine.Workspaces(0)

'Open the database

Set db = wks.OpenDatabase("C:\nwind.mdb")

'Begin the Transaction

wks.BeginTrans

bTrans = True

'Create the Contacts table.

Set tbl = db.CreateTableDef("Contacts")

With tbl

' Create fields and append them to the new TableDef object.

' This must be done before appending the TableDef object to

' the TableDefs collection of the Database.

.Fields.Append .CreateField("ContactId", dbLong)

.Fields("ContactId").Attributes = dbAutoIncrField

.Fields.Append .CreateField("ContactName", dbText)

.Fields.Append .CreateField("ContactTitle", dbText)

.Fields.Append .CreateField("Phone", dbText)

.Fields.Append .CreateField("Notes", dbMemo)

.Fields("Notes").Required = False

End With

db.TableDefs.Append tbl

'Populate the Contacts table with information from the

'customers table

db.Execute "INSERT INTO Contacts (ContactName, ContactTitle," & _

"Phone) SELECT DISTINCTROW Customers.ContactName," & _

"Customers.ContactTitle, Customers.Phone FROM Customers;"

'Add a ContactId field to the Customers Table

Set tbl = db.TableDefs("Customers")

tbl.Fields.Append tbl.CreateField("ContactId", dbLong)

'Populate the Customers table with the appropriate ContactId

db.Execute "UPDATE DISTINCTROW Contacts INNER JOIN Customers " & _

"ON Contacts.ContactName = Customers.ContactName SET " & _

"Customers.ContactId = [Contacts].[ContactId];"

'Delete the ContactName, ContactTitle, and Phone columns from

'Customers

tbl.Fields.Delete "ContactName"

tbl.Fields.Delete "ContactTitle"

tbl.Fields.Delete "Phone"

'Commit the transaction

wks.CommitTrans

Exit Sub

DAOTransactions_Err:

If bTrans Then wks.Rollback

Debug.Print DBEngine.Errors(0).Description

Debug.Print DBEngine.Errors(0).Number1

End Sub
ADO
Sub ADOTransactions()

On Error GoTo ADOTransactions_Err

Dim cnn As New ADODB.Connection

Dim cat As New ADOX.Catalog

Dim tbl As New ADOX.Table

Dim bTrans As Boolean

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Begin the Transaction

cnn.BeginTrans

bTrans = True

Set cat.ActiveConnection = cnn

'Create the Contacts table

With tbl

.Name = "Contacts"

Set .ParentCatalog = cat

.Columns.Append "ContactId", adInteger

.Columns("ContactId").Properties("AutoIncrement") = True

.Columns.Append "ContactName", adWChar

.Columns.Append "ContactTitle", adWChar

.Columns.Append "Phone", adWChar

.Columns.Append "Notes", adLongVarWChar

.Columns("Notes").Attributes = adColNullable

End With

cat.Tables.Append tbl

'Populate the Contacts table with information from the

'customers table

cnn.Execute "INSERT INTO Contacts (ContactName, ContactTitle," & _

"Phone) SELECT DISTINCTROW Customers.ContactName," & _

"Customers.ContactTitle, Customers.Phone FROM Customers;"

'Add a ContactId field to the Customers Table

Set tbl = cat.Tables("Customers")

tbl.Columns.Append "ContactId", adInteger

'Populate the Customers table with the appropriate ContactId

cnn.Execute "UPDATE DISTINCTROW Contacts INNER JOIN Customers " & _

"ON Contacts.ContactName = Customers.ContactName SET " & _

"Customers.ContactId = [Contacts].[ContactId];"

'Delete the ContactName, ContactTitle, and Phone columns

'from Customers

tbl.Columns.Delete "ContactName"

tbl.Columns.Delete "ContactTitle"

tbl.Columns.Delete "Phone"

'Commit the transaction

cnn.CommitTrans

Exit Sub

ADOTransactions_Err:

If bTrans Then cnn.RollbackTrans

Debug.Print cnn.Errors(0).Description

Debug.Print cnn.Errors(0).Number

Debug.Print cnn.Errors(0).SQLState

End Sub

Both DAO and ADO have similar methods for beginning, committing, and rolling back a transaction. One difference to note however is that because DAO transactions are tied to the Workspace object, it is possible to use DAO to perform a transaction that spans multiple Microsoft Jet databases. ADO transactions are tied to the Connection object, which limits the transaction to a single data source.

DAO also supports an additional parameter to the CommitTrans method: dbForceOSFlush. This forces the database engine to immediately flush all updates to disk, instead of caching them temporarily. The Jet Provider exposes a property, "Jet OLEDB:Transaction Commit Mode", in the Connection object's Properties collection that allows you to specify that transactions within that connection should flush all updates to disk upon commit. Setting this property to 1 is equivalent to using the dbForceOSFlush parameter.

Compacting a Database
As a database file is used, it can become fragmented as objects and records are created and deleted. Periodic defragmentation reduces the amount of wasted space in the file and can enhance performance. Compacting can also repair a corrupted database.

The following listings demonstrate how to compact a database.
Note

Use JRO, not ADO to compact a database.

DAO
Sub DAOCompactDatabase()

'Make sure there isn't already a file with the

'name of the compacted database.

If Dir("c:\newnwind.mdb") <> "" Then _

Kill "c:\newnwind.mdb"

'Basic compact - creating new database named newnwind

DBEngine.CompactDatabase "C:\nwind.mdb", "C:\newnwind.mdb"

'Delete the original database

Kill "c:\nwind.mdb"

'Rename the file back to the original name

Name "c:\newnwind.mdb" As "c:\nwind.mdb"

End Sub
JRO
Sub JROCompactDatabase()

Dim je As New JRO.JetEngine

' Make sure there isn't already a file with the

'name of the compacted database.

If Dir("c:\newnwind.mdb") <> "" Then _

Kill "c:\newnwind.mdb"

'Compact the database

je.CompactDatabase "Data Source=C:\nwind.mdb;", _

"Data Source=C:\newnwind.mdb;"

' Delete the original database

Kill "c:\nwind.mdb"

'Rename the file back to the original name

Name "c:\newnwind.mdb" As "c:\nwind.mdb"

End Sub
The JRO CompactDatabase method takes two connection strings that indicate the source database and destination database respectively. See the JRO online help for more information on the JRO CompactDatabase method.

In addition to defragmenting or repairing your database, CompactDatabase can also be used to change the database password, convert the database from an older Microsoft Jet version to a new version, to encrypt or decrypt the database, or to change the locale of the database. The following code demonstrates how to encrypt a database.

DAO
Sub DAOEncryptDatabase()

'Use compact to create a new, encrypted version of the database

DBEngine.CompactDatabase "C:\nwind.mdb", "C:\newnwind.mdb", , _

dbEncrypt

End Sub
JRO
Sub JROEncryptDatabase()

Dim je As New JRO.JetEngine

'Use compact to create a new, encrypted version of the database

je.CompactDatabase "Data Source=C:\nwind.mdb;", _

"Data Source=C:\newnwind.mdb;Jet OLEDB:Encrypt Database=True"

End Sub

Refreshing the Cache
Microsoft Jet maintains an internal cache of records for each Microsoft Jet session. Caching records provides a significant performance improvement, but it means that other sessions may not immediately see changes.

In DAO a session is associated with a DBEngine object. As each application can only have one DBEngine object, it means that each application will have its own session. A given application using DAO will always see its own changes, but other applications may not see the changes immediately. In ADO a session is associated with a Connection object. A single application using ADO may have multiple Connection objects. So within a single application, changes may not been seen immediately.

There may be instances where performance is less important than guaranteeing that a Recordset contains the latest data. In those instances, it makes sense to force a refresh of Microsoft Jet's internal cache. Both DAO and JRO provide a mechanism for this. In DAO, use the DBEngine object's Idle method with dbRefreshCache to force Microsoft Jet to refresh its cache. With JRO, use the JetEngine object's RefreshCache method passing in the ADO connection as a parameter.

The following listings demonstrate how to refresh the cache using DAO and JRO.

DAO
Sub DAORefreshCache()

Dim db As DAO.Database

Dim rst As DAO.Recordset

Dim fld As DAO.Field

'Open the database

Set db = DBEngine.OpenDatabase("C:\nwind.mdb")

' Refresh the cache to ensure that the latest data

'is available.

DBEngine.Idle dbRefreshCache

Set rst = db.OpenRecordset("Select * from Shippers")

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value;

Next

Debug.Print

rst.MoveNext

Wend

rst.Close

End Sub
ADO
Sub JRORefreshCache()

Dim cnn As New ADODB.Connection

Dim rst As ADODB.Recordset

Dim fld As ADODB.Field

Dim je As New JRO.JetEngine

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _

"Data Source=C:\nwind.mdb;"

'Refresh the cache to ensure that the latest data

'is available.

je.RefreshCache cnn

'Open a recordset and read the data

Set rst = cnn.Execute("Select * from Shippers")

While Not rst.EOF

For Each fld In rst.Fields Debug.Print fld.Value;

Next

Debug.Print

rst.MoveNext

Wend

rst.Close

End Sub

This example above is somewhat contrived because the cache will most likely already contain the latest data as the Database and Connection are being opened for the first time immediately before attempting to open the Recordset. The ability to refresh the cache is generally more useful when a Database or Connection is opened when the application is first launched and then at some later point a Recordset with the latest data needs to be opened.

New Features in ADO, ADOX, and JRO
The following sections describe new features in ADO, ADOX, JRO, and the Jet Provider. The functionality exposed by these features is not available in DAO. This is not intended as a complete list of additional features exposed in ADO, but rather this section serves to highlight some of the new functionality.

Creatable Recordset Objects
Often, a developer finds a need for a place to temporarily store some data, or wants some data to act like it came from a server so it can participate in data binding in a user interface.

ADO (in conjunction with the Cursor Service for OLE DB) enables the developer to build an empty Recordset object by specifying column information and calling Open. The following code demonstrates this:

Sub ADOCreateRecordset()

Dim rst As New ADODB.Recordset

rst.CursorLocation = adUseClient

'Add Some Fields

rst.Fields.Append "dbkey", adInteger

rst.Fields.Append "field1", adVarChar, 40, adFldIsNullable

rst.Fields.Append "field2", adDate

'Create the Recordset

rst.Open , , adOpenStatic, adLockBatchOptimistic

'Add Some Rows

rst.AddNew Array("dbkey", "field1", "field2"), _

Array(1, "string1", Date)

rst.AddNew Array("dbkey", "field1", "field2"), _

Array(2, "string2", #1/6/1992#)

'Look at the values - a value of 1 for status column = newly record

rst.MoveFirst

Debug.Print "Status", "dbkey", "field1", "field2"

While rst.EOF <> True

Debug.Print rst.Status, rst!dbkey, rst!field1, rst!field2

rst.MoveNext

Wend

'Commit the rows without ActiveConnection set resets the status bits

rst.UpdateBatch adAffectAll

'Change the first of the two rows

rst.MoveFirst

rst!field1 = "changed"

'Now look at the status, first row shows 2 (modified row),

'second shows 8 (no modifications)

'Also note that the OriginalValue property shows the value

'before the modification

rst.MoveFirst

While rst.EOF <> True

Debug.Print

Debug.Print rst.Status, rst!dbkey, rst!field1, rst!field2

Debug.Print , rst!dbkey.OriginalValue, _

rst!field1.OriginalValue, rst!field2.OriginalValue

rst.MoveNext

Wend

End Sub

Another feature of a creatable recordset is that pending operations can be committed to the recordset. Any time UpdateBatch is called on a client cursor that has no ActiveConnection set, the changes in the affected row (controlled by the AffectedRows parameter) will be committed to the buffer and the Status flags will be reset. The same applies to CancelBatch, except the changes in the buffer will be reverted and the flag will be reset.

Microsoft Data Links
Microsoft Data Links provides a graphical user interface that enables the user to create, edit, and organize connections to a data source. A Data Link file for c:\nwind.mdb can be created as follows: In Windows Explorer, select the folder in which you want to create the new data link. For example, select the C:\ folder to create the data link file in the root directory of the C drive. Choose New from the File menu of Windows Explorer. Choose Microsoft Data Link. Rename the file nwind.udl. Double-click on the new file to open the Data Link Properties window. Select the Provider tab. Select "Microsoft Jet 4.0 OLE DB Provider" from the list. Select the Connection tab. Enter the path to the Northwind database (for example, c:\nwind.mdb) in the first text box.

The following code shows how to use the data link to open the connection rather than providing the connection information directly.

Sub UseExistingDataLink()

' Opens an ADO Connection using a Data Links file (UDL)

Dim cnn As New ADODB.Connection

cnn.Open "File Name=C:\nwind.udl;"

cnn.Close

End Sub

It is also possible to use Microsoft Data Links to prompt the user for connection information. The following code demonstrates how to launch the Microsoft Data Links UI from code. In order to run this code, you'll need to add a reference to Microsoft OLE DB Service Component 1.0 Type Library in your project.

Private Sub Command1_Click()

Dim cnn As New ADODB.Connection

Dim dl As New DataLinks

dl.hWnd = Me.hWnd

If dl.PromptEdit(cnn) Then

cnn.Open

End If

End Sub

The previous code example could be modified to first specify a default value for the provider and data source.

Private Sub Command1_Click()

Dim cnn As New ADODB.Connection

Dim dl As New DataLinks

cnn.Provider = "Microsoft.Jet.OLEDB.4.0"

cnn.Properties("Data Source") = "c:\nwind.mdb"

dl.hWnd = Me.hWnd

If dl.PromptEdit(cnn) Then

cnn.Open

End If

End Sub

User Roster
Many database maintenance activities require that the administrator have exclusive access to the database. The database cannot be opened exclusively if other people already have the database open. With DAO, the administrator had no way of determining who was logged in to the database, making it difficult to determine who was blocking the administrator's attempt to open the database exclusively.

ADO and the Jet Provider expose a schema rowset that contains information about who currently has the database open. This is a provider specific schema rowset named DBSCHEMA_JETOLEDB_USERROSTER. The following code demonstrates how to open this schema rowset using ADO.

Sub UserRoster()

' List all of the users that are currently logged into the database

Dim cnn As New ADODB.Connection

Dim rst As ADODB.Recordset

'Open the connection

cnn.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\nwind.mdb;"

'Open the user roster schema rowset

Set rst = cnn.OpenSchema(adSchemaProviderSpecific, , _

JET_SCHEMA_USERROSTER)

'Print the results to the debug window

Debug.Print rst.GetString()

cnn.Close

End Sub

The first parameter, QueryType, to the ADO OpenSchema method takes an enumeration value. Values are defined for the schema rowsets defined in the OLE DB specification. To use a provider-specific schema rowset such as DBSCHEMA_JETOLEDB_USERROSTER, you must specify adProviderSpecific and then provide the GUID for the schema rowset as the last parameter. In this example, the constant JET_SCHEMA_USERROSTER is used in place of the GUID. This constant is contained in the JetOLEDBConstants.txt file included in Appendix C.

The following table describes the information contained in each column of the schema rowset.

	PRIVATE
Column
	Description

	COMPUTER_NAME
	The name of the workstation as specified using the network icon in the control panel.

	LOGIN_NAME
	The name of the user used to log into the database if the database has been secured. Otherwise the default value will be Admin.

	CONNECTED
	True if there is a corresponding user lock in the LDB file.

	SUSPECTED_STATE
	True if the user has left the database in a suspect state; otherwise Null.

Enhanced Auto Increment (Counter) Columns
Microsoft Jet 4.0 includes enhanced support for auto-increment columns that allows you to specify an initial value for the column, also known as the seed value, as well as a value by which to increment the column.

The following code demonstrates how to create a new auto-increment column with an initial value of 10 and an increment value of 100. It assumes the Contacts table already exists. To create this table, run the ADOCreateTable example code in the section, "Creating and Modifying Tables" earlier in this document.

Sub ADOCreateEnhancedAutoIncrColumn()

Dim cat As New ADOX.Catalog

Dim col As New ADOX.Column

'Open the catalog

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _ "Data Source=C:\nwind.mdb;"

' Create the new auto increment column

With col

.Name = "ContactId"

.Type = adInteger

Set .ParentCatalog = cat

.Properties("AutoIncrement") = True

.Properties("Seed") = CLng(10)

.Properties("Increment") = CLng(100)

End With

'Append the column to the table

cat.Tables("Contacts").Columns.Append col

Set cat = Nothing

End Sub

In addition to specifying seed and increment values when the column is created, they can be modified for existing auto-increment columns. Use caution when modifying these values for existing columns as it is possible to create conflicts with existing values. For example, if the table already contains values 1 through 10 in the column, it is possible to set the seed value to 5.

Replication
Replica Visibility
JRO introduces a new property of a replica that is used to indicate the visibility of a replica. The visibility determines which replicas that replica can synchronize with. A replica's visibility may be Global, Local, or Anonymous. The replica's visibility is set when the replica is first created. Once the replica is created the visibility cannot be changed.

A global replica can synchronize with any other replica in the set. Changes at a global replica are fully tracked. From a global replica, you can create replicas that are global, local, or anonymous. Replicas created from a global replica are global by default.

A local replica can synchronize only with its parent, a global replica, and will not be permitted to synchronize with other replicas in the replica set. The parent will proxy any replication conflicts and errors for the local replica. Other replicas will not be aware of the local replica. The parent replica can schedule a synchronization with a local replica. All replicas created from a local replica will also be local and inherit the same parent replica.

An anonymous replica can synchronize with its parent, a global replica. These are replicas who, say, subscribe by way of the Internet, who do not have any particular identity, but instead proxy their identify for updates to the publishing replica. A global replica will not be able to schedule synchronizations to an anonymous replica. Anonymous replicas provide a way of getting around the "limit on number of replicas" problem. In addition, it helps to keep out unnecessary topology information about replicas that participate only occasionally. All replicas created from an anonymous replica will also be anonymous and inherit the same parent replica.

The following code demonstrates how to create a new Anonymous replica:

Function MakeAnonReplica(strReplicableDB As String, _

strNewReplica As String) As Integer

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = strReplicableDB

repMaster.CreateReplica strNewReplica, "Replica of " & _ strReplicableDB, , jrRepVisibilityAnon

Set repMaster = Nothing

End Function

Replica Priority
JRO introduces a new property of a replica that is used to indicate the relative importance of a replica during synchronization. If conflicts are encountered during synchronization the replica with the highest priority wins.

The following code demonstrates how to set the priority when creating a new replica:

Function MakeAdditionalReplica(strReplicableDB As String, _

strNewReplica As String, intPriority As Integer) As Integer

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = strReplicableDB

repMaster.CreateReplica strNewReplica, "Replica of " & _ strReplicableDB, , , intPriority

Set repMaster = Nothing

End Function

Indirect Synchronization
With a direct synchronization your machine is tied up until the synchronization is complete. On fast Local Area Networks (LANs) this may not be an issue. However, synchronization over a slow Wide Area Network (WAN) may take many minutes or more. Indirect synchronization was designed for this scenario. For an indirect synchronization, the syncrhonizer leaves the changes in a dropbox and control returns to the application. The synchronizer for the other replica will then pick up the changes and apply them.

The following code demonstrates how to perform an indirect synchronization:

Sub TwoWayIndirectSync()

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "Northwind.mdb"

' Sends changes made in each replica to the other.

repMaster.Synchronize "Nwreplica.mdb", jrSyncTypeImpExp, _

jrSyncModeIndirect

Set repMaster = Nothing

End Sub

Synchronizing Changes with a Microsoft SQL Server
JRO supports synchronizing changes between a Microsoft SQL Server and a Microsoft Jet database. Note, the Microsoft Jet database and its synchronizer must already be configured to support the replication to SQL Server.

The following code demonstrates how to perform a Microsoft Jet to SQL synchronization:
Sub JetSQLSync()

Dim repMaster As New JRO.Replica

repMaster.ActiveConnection = "pubs.mdb"

' Sends changes made in each replica to the other.

repMaster.Synchronize "" , jrSyncTypeImpExp, _

jrSyncModeDirect

Set repMaster = Nothing

End Sub

Notice the TargetReplica parameter for the Synchronize method is an empty string ("") and the SyncMode is jrSyncModeDirect. Leaving the TargetReplica blank indicates that this is a Microsoft Jet to SQL Server synchronization. All Microsoft Jet to SQL Server synchronizations are direct.
Column Level Conflict Resolution
Column level conflict resolution lets you merge two records and only report a conflict if simultaneous changes have been to the same field. If you frequently have overlapping updates in the same row, setting this option could increase performance.

This option is set when a database is made replicable, it cannot be changed once the process of making the database replicable is complete. Column level conflict resolution is turned on by default.

The following code demonstrates how to turn on column level tracking when making a database replicable:

Sub MakeDesignMaster()

Dim repMaster As New JRO.Replica

repMaster.MakeReplicable "Northwind.mdb", True

Set repMaster = Nothing

End Function

For an example of how to turn off column level tracking when making a database replicable, see the JRO code example in the section "Making a Database Replicable".

Obsolete Properties and Methods
This topic describes several properties and methods that don't map to properties or methods in ADO, ADOX, or JRO. However, that does not imply that the functionality provided by the DAO properties and methods is not available in ADO, ADOX, or JRO.

Below, each property or method not exposed is listed and followed by a description of why it is not exposed and, if applicable, how to get the equivalent functionality using ADO, ADOX, or JRO.

	PRIVATE
Object
	Property/Method
	Explanation

	DBEngine
	DefaultType
	DAO 3.5 introduced ODBCDirect as a means to work with ODBC data sources without loading the Microsoft Jet database engine. To use ODBCDirect, you set the DefaultType and/or Type properties to dbUseODBC.

As discussed in the "Introduction" section, ADO has a different approach to enabling access to ODBC data sources as well as enabling native access to various data sources such as Microsoft SQL Server. ADO allows the user to choose which OLE DB provider they want to use to access the data. So, to work with ODBC data sources without loading the Microsoft Jet database engine, specify MSDASQL rather than Microsoft.Jet.OLEDB.4.0 as the provider name.

	DBEngine
	DefaultPassword
	

	DBEngine
	DefaultUser
	

	DBEngine
	RegisterDatabase
	

	DBEngine
	RepairDatabase
	The functionality found in RepairDatabase has been incorporated into CompactDatabase in Microsoft Jet 4.0. Compacting a database will also repair it.

	Workspace
	Name
	

	Workspace
	Type
	See comments for DBEngine DefaultType property.

	Database
	V1xNullBehavior
	

	Recordset
	CacheStart
	

	Recordset
	Edit
	The process of updating records has been simplified with ADO such that Edit is not needed. With DAO, you had to call the Edit method to put the Recordset into edit mode before modifying a value otherwise an error would occur. With ADO, modifying a value automatically puts the Recordset in edit mode.

	Recordset
	FillCache
	

	Recordset
	LastModified
	After modifying a record (or creating a new one) and calling the Update method to save the changes, DAO users had to set the Bookmark property to the LastModified property to ensure that the current record was the record they had just modified. With ADO, this is not necessary as ADO automatically ensures that the current record stays the same after a call to Update.

	Recordset
	Name
	

	Recordset
	Restartable
	

	QueryDef
	ReturnsRecords
	With DAO QueryDefs it was necessary to know whether or not the query returned records in order to execute the query. If the query returned records, you had to use the OpenRecordset method to execute the query. If it did not return records, you had to use the Execute method.

With ADO you no longer need to know whether or not the query returns records in order to execute it because the Execute method is used in either case. If the query returns records, the Execute method returns a Recordset object otherwise it returns Nothing.

	Container
	Name
	

	Document
	Name
	

	User
	Password
	

	User
	PID
	

	Group
	PID
	

Appendix A: DAO to ADO Quick Reference
[The information in this section is preliminary documentation, incomplete, and subject to change.]
The table provided below is intended to be a quick reference for determining how to map DAO properties and methods to ADO, ADOX, and JRO properties and methods. However, it is not intended to imply a direct, one-to-one mapping between the properties and methods listed. There may be subtle, or not so subtle, differences between the mapped properties and methods. For more detailed information on the ADO, ADOX, and JRO properties and methods see the documentation for the object model. Use the information provided earlier in this document to map the code for common tasks that are performed using DAO to ADO, ADOX, and JRO code.

	PRIVATE
DAO Object
	Property/Method
	ADO/ADOX/JROModel
	Object
	Property/Method

	DBEngine
	DefaultType1
	N/A
	N/A
	N/A

	DBEngine
	DefaultPassword1
	N/A
	N/A
	N/A

	DBEngine
	DefaultUser1
	N/A
	N/A
	N/A

	DBEngine
	IniPath
	ADO
	Connection
	Jet OLEDB:Registry Path2

	DBEngine
	LoginTimeout
	ADO
	Connection
	ConnectionTimeout

	DBEngine
	SystemDB
	ADO
	Connection
	Jet OLEDB:System Database2

	DBEngine
	Version
	ADO
	Connection
	Version

	DBEngine
	BeginTrans
	ADO
	Connection
	BeginTrans

	DBEngine
	CommitTrans
	ADO
	Connection
	CommitTrans

	DBEngine
	Rollback
	ADO
	Connection
	RollbackTrans

	DBEngine
	CompactDatabase
	JRO
	JetEngine
	CompactDatabase

	DBEngine
	CreateDatabase
	ADOX
	Catalog
	Create

	DBEngine
	CreateWorkspace
	ADO
	Connection
	Open

	DBEngine
	Idle
	JRO
	JetEngine
	RefreshCache

	DBEngine
	OpenDatabase
	ADO
	Connection
	Open

	DBEngine
	RegisterDatabase1
	N/A
	N/A
	N/A

	DBEngine
	RepairDatabase1
	N/A
	N/A
	N/A

	DBEngine
	SetOption
	ADO
	Connection
	Properties3

	Workspace
	IsolateODBCTrans
	ADO
	Connection
	Isolation Levels2

	Workspace
	LoginTimeout
	ADO
	Connection
	ConnectionTimeout

	Workspace
	Name1
	N/A
	N/A
	N/A

	Workspace
	Type1
	N/A
	N/A
	N/A

	Workspace
	UserName
	ADO
	Connection
	User Id2

	Workspace
	BeginTrans
	ADO
	Connection
	BeginTrans

	Workspace
	CommitTrans
	ADO
	Connection
	CommitTrans

	Workspace
	Rollback
	ADO
	Connection
	RollbackTrans

	Workspace
	Close
	ADO
	Connection
	Close

	Workspace
	CreateDatabase
	ADOX
	Catalog
	Create

	Workspace
	CreateGroup
	ADOX
	Groups
	Append

	Workspace
	CreateUser
	ADOX
	Users
	Append

	Workspace
	OpenDatabase
	ADO
	Connection
	Open

	Database
	CollatingOrder
	ADO
	Connection
	Locale Identifier2

	Database
	Connect
	ADO
	Connection
	ConnectionString

	Database
	Name
	ADO
	Connection
	Data Source2

	Database
	QueryTimeout
	ADO
	Connection
	CommandTimeout

	Database
	Replicable
	JRO
	Replica
	MakeReplicable

	Database
	ReplicaId
	JRO
	Replica
	ReplicaId

	Database
	ReplicationConflictFunction
	JRO
	Replica
	ConflictFunction

	Database
	RecordsAffected
	ADO
	Connection
	Execute(RecordsAffected)

	Database
	Transactions
	ADO
	Connection
	Transaction DDL2

	Database
	Updatable
	ADO
	Connection
	Mode

	Database
	V1xNullBehavior
	N/A
	N/A
	N/A

	Database
	Version
	ADO
	Connection
	DBMS Version2

	Database
	Close
	ADO
	Connection
	Close

	Database
	CreateProperty
	N/A
	N/A
	Not supported in this release

	Database
	CreateQueryDef
	ADOX
	Command
	Dim New4

	Database
	CreateRelation
	ADOX
	Key
	Dim New4

	Database
	CreateTableDef
	ADOX
	Table
	Dim New4

	Database
	Execute
	ADO
	Connection
	Execute

	Database
	MakeReplica
	JRO
	Replica
	CreateReplica

	Database
	NewPassword
	ADOX
	Catalog
	Modify

	Database
	OpenRecordset
	ADO
	Recordset
	Open

	Database
	PopulatePartial
	JRO
	Replica
	PopulatePartial

	Database
	Synchronize
	JRO
	Replica
	Synchronize

	Recordset
	AbsolutePosition
	ADO
	Recordset
	AbsolutePosition

	Recordset
	BOF
	ADO
	Recordset
	BOF

	Recordset
	EOF
	ADO
	Recordset
	EOF

	Recordset
	Bookmark
	ADO
	Recordset
	Bookmark

	Recordset
	Bookmarkable
	ADO
	Recordset
	Supports

	Recordset
	CacheSize
	ADO
	Recordset
	Jet OLEDB:Fat Cursor Cache Size2

	Recordset
	CacheStart1
	N/A
	N/A
	N/A

	Recordset
	DateCreated
	ADOX
	Table
	DateCreated

	Recordset
	LastUpdated
	ADOX
	Table
	DateModified

	Recordset
	EditMode
	ADO
	Recordset
	EditMode

	Recordset
	Filter
	ADO
	Recordset
	Filter

	Recordset
	Index
	ADO
	Recordset
	Index

	Recordset
	LastModified1
	N/A
	N/A
	N/A

	Recordset
	LockEdits
	ADO
	Recordset
	LockType

	Recordset
	Name1
	N/A
	N/A
	N/A

	Recordset
	NoMatch
	ADO
	Recordset
	Find

	Recordset
	PercentPosition
	
	
	

	Recordset
	RecordCount
	ADO
	Recordset
	RecordCount

	Recordset
	RecordStatus
	ADO
	Recordset
	EditMode

	Recordset
	Restartable
	N/A
	N/A
	N/A

	Recordset
	Sort
	ADO
	Recordset
	Sort

	Recordset
	Transactions
	
	
	

	Recordset
	Type
	ADO
	Recordset
	CursorType

	Recordset
	Updatable
	ADO
	Recordset
	Recordset.Supports(adUpdate)

	Recordset
	ValidationRule
	ADOX
	Table
	ValidationRule

	Recordset
	ValidationText
	ADOX
	Table
	ValidationText

	Recordset
	AddNew
	ADO
	Recordset
	AddNew

	Recordset
	CancelUpdate
	ADO
	Recordset
	CancelUpdate

	Recordset
	Clone
	ADO
	Recordset
	Clone

	Recordset
	Close
	ADO
	Recordset
	Close

	Recordset
	CopyQueryDef
	ADO
	Recordset
	Source

	Recordset
	Delete
	ADO
	Recordset
	Delete

	Recordset
	Edit1
	N/A
	N/A
	N/A

	Recordset
	FillCache1
	N/A
	N/A
	N/A

	Recordset
	FindFirst
	ADO
	Recordset
	Find

	Recordset
	FindLast
	ADO
	Recordset
	Find

	Recordset
	FindNext
	ADO
	Recordset
	Find

	Recordset
	FindPrevious
	ADO
	Recordset
	Find

	Recordset
	GetRows
	ADO
	Recordset
	GetRows

	Recordset
	Move
	ADO
	Recordset
	Move

	Recordset
	MoveFirst
	ADO
	Recordset
	MoveFirst

	Recordset
	MoveLast
	ADO
	Recordset
	MoveLast

	Recordset
	MoveNext
	ADO
	Recordset
	MoveNext

	Recordset
	MovePrevious
	ADO
	Recordset
	MovePrevious

	Recordset
	OpenRecordset
	ADO
	Recordset
	Open

	Recordset
	Requery
	ADO
	Recordset
	Requery

	Recordset
	Seek
	ADO
	Recordset
	Seek

	Recordset
	Update
	ADO
	Recordset
	Update

	QueryDef
	CacheSize
	ADO
	Command
	Jet OLEDB:Fat Cursor Cache Size2

	QueryDef
	Connect
	ADO
	Command
	Jet OLEDB:Link datasource2

	QueryDef
	DateCreated
	ADOX
	Procedure
	DateCreated

	QueryDef
	LastUpdated
	ADOX
	Procedure
	DateModified

	QueryDef
	KeepLocal
	JRO
	Replica
	Get/SetObjectReplicability

	QueryDef
	LogMessages
	
	
	

	QueryDef
	MaxRecords
	ADO
	Command
	MaxRecords

	QueryDef
	Name
	ADOX
	Procedure
	Name

	QueryDef
	ODBCTimeout
	ADO
	Command
	Jet OLEDB:ODBC Command Timeout2

	QueryDef
	RecordsAffected
	ADO
	Command
	Execute(RecordsAffected)

	QueryDef
	Replicable
	JRO
	Replica
	Get/SetObjectReplicability

	QueryDef
	ReturnsRecords1
	N/A
	N/A
	N/A

	QueryDef
	SQL
	ADO
	Command
	CommandText

	QueryDef
	Type
	
	
	

	QueryDef
	Updatable
	
	
	

	QueryDef
	Close
	ADO/X
	Command / Procedure
	Set to Nothing

	QueryDef
	CreateProperty
	
	
	Not supported in this release

	QueryDef
	Execute
	ADO
	Command
	Command.Execute

	QueryDef
	OpenRecordset
	ADO
	Recordset
	Open

	TableDef
	Attributes
	ADOX
	Table
	Properties5

	TableDef
	ConflictTable
	JRO
	Replica
	ConflictTables

	TableDef
	Connect
	ADOX
	Table
	Jet OLEDB:Link Datasource2

	TableDef
	DateCreated
	ADOX
	Table
	DateCreated

	TableDef
	LastUpdated
	ADOX
	Table
	DateModified

	TableDef
	KeepLocal
	JRO
	Replica
	Get/SetObjectReplicability

	TableDef
	Name
	ADOX
	Table
	Name

	TableDef
	RecordCount
	
	
	

	TableDef
	Replicable
	JRO
	Replica
	Get/SetObjectReplicability

	TableDef
	ReplicaFilter
	JRO
	Filter
	FilterCriteria

	TableDef
	SourceTableName
	ADOX
	Table
	Jet OLEDB:Remote Table Name2

	TableDef
	Updatable
	
	
	

	TableDef
	ValidationRule
	ADOX
	Table
	Jet OLEDB:Table Validation Rule2

	TableDef
	ValidationText
	ADOX
	Table
	Jet OLEDB:Table Validation Text2

	TableDef
	CreateField
	ADOX
	Columns
	Append

	TableDef
	CreateIndex
	ADOX
	Indexes
	Append

	TableDef
	CreateProperty
	N/A
	N/A
	Not supported in this release.

	TableDef
	OpenRecordset
	ADO
	Recordset
	Open

	TableDef
	RefreshLink
	ADOX
	Table
	Jet OLEDB:Create Link2

	Field
	AllowZeroLength
	ADOX
	Column
	Jet OLEDB:Allow Zero Length2

	Field
	Attributes
	ADOX
	Column
	Properties5

	Field
	CollatingOrder
	ADO/X
	Field/Column
	Collation Name2

	Field
	DataUpdatable
	ADO
	Field
	Attributes

	Field
	DefaultValue
	ADOX
	Column
	DefaultValue

	Field
	FieldSize
	ADO
	Field
	ActualSize

	Field
	ForeignName
	ADO
	Column
	RelatedColumn

	Field
	Name
	ADO/X
	Field/Column
	Name

	Field
	OrdinalPosition
	
	
	

	Field
	Required
	ADO/X
	Field/Column
	Attributes

	Field
	Size
	ADO/X
	Field/Column
	DefinedSize

	Field
	SourceField
	
	
	

	Field
	SourceTable
	
	
	

	Field
	Type
	ADO/X
	Field/Column
	Type

	Field
	ValidateOnSet
	ADOX
	Column
	Jet OLEDB:Validate On Set2

	Field
	ValidationRule
	ADOX
	Column
	Jet OLEDB:Column Validation Rule2

	Field
	ValidationText
	ADOX
	Column
	Jet OLEDB:Column Validation Text2

	Field
	Value
	ADO
	Field
	Value

	Index
	Clustered
	ADOX
	Index
	Clustered

	Index
	DistinctCount
	
	
	

	Index
	Foreign
	ADOX
	Key
	Type

	Index
	IgnoreNulls
	ADOX
	Index
	IndexNulls

	Index
	Name
	ADOX
	Index
	Name

	Index
	Primary
	ADOX
	Index
	PrimaryKey

	Index
	Required
	ADOX
	Index
	Index.IndexNulls

	Index
	Unique
	ADOX
	Index
	Unique

	Index
	CreateField
	ADOX
	Column
	Dim New3

	Index
	CreateProperty
	N/A
	N/A
	Not supported in this release

	Relation
	Attributes
	ADOX
	Key
	Properties5

	Relation
	ForeignTable
	ADOX
	Key
	RelatedTable

	Relation
	Name
	ADOX
	Key
	Name

	Relation
	PartialReplica
	JRO
	Filter
	FilterCriteria

	Relation
	Table
	ADOX
	Key
	Parent Table Object6

	Relation
	CreateField
	ADOX
	Column
	Dim New3

	User
	Name
	ADOX
	User
	Name

	User
	Password
	N/A
	N/A
	N/A

	User
	PID
	N/A
	N/A
	N/A

	User
	CreateGroup
	ADOX
	Groups
	Append

	User
	NewPassword
	ADOX
	User
	ChangePassword

	Group
	Name
	ADOX
	Group
	Name

	Group
	PID
	N/A
	N/A
	N/A

	Group
	CreateUser
	ADOX
	Users
	Append

	Container
	AllPermissions
	ADOX
	User/Group
	GetPermissions

	Container
	Inherit
	ADOX
	User/Group
	Get/SetPermissions

	Container
	Name1
	N/A
	N/A
	N/A

	Container
	Owner
	ADOX
	Catalog
	Get/SetObjectOwner

	Container
	Permissions
	ADOX
	User/Group
	Get/SetPermissions

	Container
	UserName
	ADOX
	User/Group
	Get/SetPermissions

	Document
	AllPermissions
	ADOX
	User
	GetPermissions

	Document
	Container1
	N/A
	N/A
	N/A

	Document
	DateCreated
	
	
	

	Document
	LastUpdated
	
	
	

	Document
	KeepLocal
	JRO
	Replica
	Get/SetObjectReplicability

	Document
	Name1
	N/A
	N/A
	N/A

	Document
	Owner
	ADOX
	Catalog
	Get/SetObjectOwner

	Document
	Permissions
	ADOX
	User/Group
	Get/SetPermissions

	Document
	Replicable
	JRO
	Replica
	Get/SetObjectReplicability

	Document
	UserName
	ADOX
	User/Group
	Get/SetPermissions

1 This property or method does not map to ADO, ADOX, or JRO. See the section "Obsolete Properties and Methods" earlier in this document.
2 This property is part of the object's Properties collection.
3 See the section "Setting Microsoft Jet Database Engine Options" for more information on mapping the SetOption method to the Connection properties.
4 The object is creatable. Use the VBA Dim New syntax to create a new object.
5 The DAO Attributes property is a bitmask of a number of constants which map to several properties in the ADOX model. For a detailed mapping of the DAO constants to ADOX properties, see the section Creating Local Tables for Table and Field properties. See the section Enforcing Referential Integrity for Relation/Key properties.
6 The primary table in a relationship is represented in ADOX by the Table object that contains a primary Key object in its Keys collection. Primary keys are specified by a Type property value of adKeyPrimary.

Appendix B: Microsoft Jet 4.0 OLE DB Properties Reference
[The information in this section is preliminary documentation, incomplete, and subject to change.]
The Properties collections in ADO contain a dynamic set of properties returned by the OLE DB provider being used. The tables below contain the list of properties, both standard OLE DB and provider-specific, that are available in the Properties collections of ADO and ADOX objects when using the Microsoft Jet 4.0 OLE DB Provider.

The Property Name column below is the name of the property used when accessing the property in the collection. For example, the Data Source property below is accessed as follows:
Dim cnn As New ADODB.Connection

cnn.Properties("Data Source") = "c:\nwind.mdb"

The Type column indicates the ADO data type for the column. For properties on ADO objects (Connection, Recordset), ADO will automatically try to coerce the value specified when setting the property. For example, if the property is type adBStr and you set the value to 5, ADO will coerce the value to "5". ADOX will not automatically attempt to coerce property values. If you attempt to set a property of type adBStr in an ADOX collection to 5, you'll receive a run-time error. When developing in VBA you can indicate the type for the property value either explicitly or implicitly. To explicitly specify the data type, use the VBA built-in functions CStr, CLng, CInt, and CBool when setting properties of type adBStr, adInteger, adSmallInt, and adBoolean respectively. For properties of type adBStr, adSmallInt, and adBoolean you can specify the data type implicitly by using quotes around the string, specifying a number, or using True or False respectively.

The Default column indicates the default value for the property.

The Attributes column is a bitmask that is used to indicate whether the property can be read, set, or is required.

ADO Connection Properties

	PRIVATE
Property Name
	Type
	Default
	Attributes
	Description

	Cache Authentication
	adBoolean
	True
	adPropRead

adPropRequired
	Indicates whether the provider is allowed to cache sensitive authentication information such as a password in an internal cache.

	Data Source
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	The name of the database to connect to.

	Encrypt Password
	adBoolean
	False
	adPropRead

adPropRequired
	Indicates whether the password must be sent to the data source in an encrypted form.

	Extended Properties
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	A string containing connection information for opening external databases.

	Locale Identifier
	adInteger
	1033
	adPropRead

adPropWrite

adPropRequired
	The locale ID of preference.

	Mask Password
	adBoolean
	False
	adPropRead

adPropRequired
	Indicates whether the password must be sent to the data source in a masked form.

	Mode
	adInteger
	adShareModeDenyNone
	adPropRead

adPropWrite

adPropRequired
	A bitmask specifying access permissions.

	OLE DB Services
	adInteger
	-6
	adPropRead

adPropWrite

adPropRequired
	

	Password
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	The password to be used when connecting to the data source. When the value of this property is retrieved, the provider may return a mask or an empty string instead of the actual password.

	Persist Encrypted
	adBoolean
	False
	adPropRead

adPropRequired
	Indicates whether the provider must persist sensitive authentication information in an encrypted form.

	Persist Security Info
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the provider is allowed to persist sensitive authentication information such as a password along with other authentication information.

	Prompt
	adSmallInt
	adPromptComplete
	adPropRead

adPropWrite

adPropRequired
	Whether to prompt the user during initialization.

	User Id
	adBStr
	"Admin"
	adPropRead

adPropWrite

adPropRequired
	The user ID to be used when connecting to the data source.

	Window Handle
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	The window handle to be used if the data source needs to prompt for additional information.

	Jet OLEDB:Compact Without Relationships
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Used with the JRO CompactDatabase method. Ignored when used with the ADO Connection object or the ADOX Create method.

	Jet OLEDB:Compact Without Replica Repair
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Used with the JRO CompactDatabase method. Ignored when used with the ADO Connection object or the ADOX Create method.

	Jet OLEDB:Create System Database
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Used with the ADOX Catalog object's Create method. Ignored when used with the ADO Connection object or JRO CompactDatabase method.

	Jet OLEDB:Database Locking Mode
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	Scheme to be used when locking the database. Note that a database can only be open in one mode at a time. The first user to open the database gets determines the locking mode used while the database is open.

See Appendix C: Microsoft Jet 4.0 Provider Defined Property Values for the list of valid values.

	Jet OLEDB:Database Password
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Password used to open the database. This differs from the user password in that the database password is per file, while a user password is per user.

	Jet OLEDB:Don't Copy Locale on Compact
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Used with the JRO CompactDatabase method. Ignored when used with the ADO Connection object or the ADOX Create method.

	Jet OLEDB:Encrypt Database
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Used with the ADOX Catalog object's Create method and the JRO CompactDatabase method. Ignored when used with the ADO Connection object.

	Jet OLEDB:Engine Type
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	An enumeration defining the storage engine currently in use to access this database/store.

See Appendix C: Microsoft Jet 4.0 Provider Defined Property Values for the list of valid values.

	Jet OLEDB:Global Bulk Transactions
	adInteger
	1
	adPropRead

adPropWrite

adPropRequired
	Determines if SQL bulk operations are transacted. This property determines the default for all operations in the current connection.

See Appendix C: Microsoft Jet 4.0 Provider Defined Property Values for the list of valid values.

	Jet OLEDB:Global Partial Bulk Ops
	adInteger
	2
	adPropRead

adPropWrite

adPropRequired
	This property determines the behavior of Microsoft Jet when SQL DML bulk operations fail. It can be overridden on a per-rowset basis by setting the Jet OLEDB:Partial Bulk Ops property.

See Appendix C: Microsoft Jet 4.0 Provider Defined Property Values for the list of valid values.

	Jet OLEDB:New Database Password
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	This property is ignored. It is used with the OLE DB IDataSourceAdmin::ModifyDataSource interface which is not currently exposed in ADO.

	Jet OLEDB:Registry Path
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Path to the registry key to use for Microsoft Jet information. This does not include the HKEY_LOCAL_MACHINE tag. This value can be changed to a secondary location to store registry values for a particular application that are not shared with other applications that use Microsoft Jet on the machine.

For example, the setting for Access 2000 is: SOFTWARE\Microsoft\Office\9.0\Access\Jet\4.0\Engines

	Jet OLEDB:System database
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Location of the Microsoft Jet system database to use for authenticating users. This overrides the value set in the registry or the corresponding systemdb registry key used when Jet OLEDB:Registry Path is used. This can include the path to the file.

In addition to the properties in the preceding table, the following properties are available once the Connection has been opened.

ADO Recordset Properties
[The information in this section is preliminary documentation, incomplete, and subject to change.]
ADO uses a number of the properties exposed in the Recordset's Properties collection in order to open a Recordset. For instance, ADO will always set the Bookmarkable property to True if you request an updatable Recordset. As a result, ADO may overwrite existing values for these properties.

In general, most of these properties are specific to the behavior of the underlying OLE DB rowset and are not of significant interest or use to the ADO programmer. Of the properties listed below, the Jet Provider specific properties and the Append-Only Rowset property are of the most use to the ADO/Microsoft Jet programmer.

	PRIVATE
Property Name
	Type
	Default
	Attributes
	Description

	Access Order
	
	
	
	

	Append-Only Rowset
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Whether the Recordset will initially exclude existing records. It prevents editing or deleting existing records in the table or query results.

	Blocking Storage Objects
	adBoolean
	True
	adPropRead

adPropRequired
	Indicates whether storage objects (adLongVarWChar or adLongBinary fields) may prevent the use of some methods.

	Bookmark Type
	adInteger
	1
	adPropRead

adPropRequired
	The bookmark type supported by the Recordset.

A value of 1 indicates that the bookmark type is numeric. Numeric bookmarks are based upon a row property that is not dependent on the values of the row's columns. The validity of numeric bookmarks is not changed by modifying the rows columns.

A value of 2 indicates that the bookmark type is key. Key bookmarks are based on the values of one or more of the row's columns. A key bookmark may be left dangling if the key values of the corresponding row are changed.

	Bookmarkable
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Whether the Recordset supports bookmarks.

	Bookmarks Ordered
	
	
	
	

	Cache Deferred Columns
	adBoolean
	False
	adPropRead

adPropRequired
	Whether the provider caches the value of a deferred column when the consumer first gets a value from that column.

	Change Inserted Rows
	adBoolean
	True
	adPropRead

adPropRequired
	Whether new rows can be changed or modified.

	Column Privileges
	
	
	
	

	Column Set Notification
	
	
	
	

	Column Writable
	
	
	
	

	Defer Column
	
	
	
	

	Delay Storage Object Updates
	adBoolean
	True
	adPropRead

adPropRequired
	In delayed update mode, storage objects are also used in delayed update mode. Changes to the object are not transmitted to the data source until Update is called.

	Fetch Backwards
	
	
	
	

	Hold Rows
	
	
	
	

	Immobile Rows
	adBoolean
	False
	adPropRead

adPropRequired
	If the Recordset is ordered (table-type with a defined index), inserted and updated rows (when one or more of the columns in the ordering criteria are updated) obey the ordering criteria. If the Recordset is not ordered, then inserted rows are not guaranteed to appear in a determinate position and the position of updated rows is not changed.

	IAccessor
	
	
	
	

	IColumnsInfo
	
	
	
	

	IColumnsRowset
	
	
	
	

	IConnectionPointContainer
	
	
	
	

	IconvertType
	
	
	
	

	ILockBytes
	
	
	
	

	IRowset
	
	
	
	

	IRowsetChange
	
	
	
	

	IRowsetCurrentIndex
	
	
	
	

	IRowsetIdentity
	
	
	
	

	IRowsetIndex
	
	
	
	

	IRowsetInfo
	
	
	
	

	IRowsetLocate
	
	
	
	

	IRowsetResynch
	
	
	
	

	IRowsetScroll
	
	
	
	

	IRowsetUpdate
	
	
	
	

	IsequentialStream
	
	
	
	

	IStorage
	
	
	
	

	IStream
	
	
	
	

	ISupportErrorInfo
	
	
	
	

	Literal Bookmarks
	adBoolean
	False
	adPropRead

adPropRequired
	Bookmarks cannot be compared as a sequence of bytes.

	Literal Row Identity
	adBoolean
	False
	adPropRead

adPropRequired
	The consumer must call IrowsetIdentity::IsSameRow to determine whether two row handles point to the same row.

	Lock Mode
	
	
	
	

	Maximum Open Rows
	
	
	
	

	Memory Usage
	
	
	
	

	Notification Granularity
	
	
	
	

	Notification Phases
	
	
	
	

	Objects Transacted
	
	
	
	

	Others' Inserts Visible
	
	
	
	

	Others' Changes Visible
	
	
	
	

	Preserve on Abort
	
	
	
	

	Preserve on Commit
	
	
	
	

	Quick Restart
	
	
	
	

	Reentrant Events
	
	
	
	

	Remove Deleted Rows
	
	
	
	

	Report Multiple Changes
	
	
	
	

	Return Pending Inserts
	
	
	
	

	Row Delete Notification
	
	
	
	

	Row First Change Notification
	
	
	
	

	Row Insert Notification
	
	
	
	

	Row Privileges
	
	
	
	

	Row Resynchronization Notification
	
	
	
	

	Row Threading Model
	
	
	
	

	Row Undo Change Notification
	
	
	
	

	Row Undo Delete Notification
	
	
	
	

	Row Undo Insert Notification
	
	
	
	

	Row Update Notification
	
	
	
	

	Rowset Fetch Position Change Notification
	
	
	
	

	Rowset Release Notification
	
	
	
	

	Scroll Backwards
	
	
	
	

	Server Data on Insert
	
	
	
	

	Skip Deleted Bookmarks
	
	
	
	

	Strong Row Identity
	
	
	
	

	Updatability
	
	
	
	

	Use Bookmarks
	
	
	
	

	Jet OLEDB:Bulk Transactions
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	Determines if SQL bulk operations are transacted. This property determines if the current command execution is transacted.

	Jet OLEDB:Enable Fat Cursors
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Whether Microsoft Jet should cache multiple rows when populating the cursor for remote row sources.

	Jet OLEDB:Fat Cursor Cache Size
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	Number of rows which should be cached when using remote data source row caching. Only used if DBPROP_JETOLEDB_ENABLEFATCURSOR is VARIANT_TRUE

	Jet OLEDB:Grbit Value
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	

	Jet OLEDB:Inconsistent
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Allows inconsistent updates on query results. Equivalent to DAO's dbInconsistent flag.

	Jet OLEDB:Locking Granularity
	adInteger
	2
	adPropRead

adPropWrite

adPropRequired
	Determines if a table is opened using Alcatraz row-level locking. This property is ignored unless DBPROP_JETOLEDB_DATABASELOCKMODE is set to DBPROPVAL_DL_ALCATRAZ.

	Jet OLEDB:ODBC Pass-Through Statement
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Tells Microsoft Jet that SQL text in a Command object should be passed to the backend unaltered.

	Jet OLEDB:Partial Bulk Ops
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	This property determines the behavior of Microsoft Jet when SQL DML bulk operations fail.

	Jet OLEDB:Pass Through Query Bulk-Op
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	

	Jet OLEDB:Pass Through Query Connect String
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Microsoft Jet Connect String to be used to connect to the remote data source. This property is used with DBPROP_JETOLEDB_ODBCPASSTHROUGH and is ignored unless the value of that property is VARIANT_TRUE.

	Jet OLEDB:Stored Query
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Should the command text set in ICommandText::SetCommandText be interpreted as a stored query instead of an SQL command

	Jet OLEDB:Use Grbit
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	

	Jet OLEDB:Validate Rules On Set
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Whether Microsoft Jet Validation Rules are evaluated when columns are set or when changes are being committed to the database.

ADOX Table Properties

	PRIVATE
Property Name
	Type
	Default
	Attributes
	Description

	Temporary Table
	adBoolean
	False
	adPropRead

adPropRequired
	Indicates whether or not the table is destroyed when the connection is released.

	Jet OLEDB:Cache Link Name/Password
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether or not the User Id and password used to open the external database are saved with the connection information.

This proprety is ignored if Jet OLEDB:Create Link is False.

	Jet OLEDB:Create Link
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether or not the table is a linked table (formerly known as an attached table).

A linked table is a table in another database linked to a Microsoft Jet database. Data for linked tables remains in the external database where it can be manipulated by other applications.

	Jet OLEDB:Exclusive Link
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether or not the external database is opened exclusively when the linked table is created or used. The value is True if the external database will be opened exclusively and False if the external database will be opened for multi-user access.

This property is ignored if Jet OLEDB:Create Link is False.

	Jet OLEDB:Link Datasource
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	A String containing the name of the external database to link to. The default value is an empty string ("").

This property is ignored if Jet OLEDB:Create Link is False.

	Jet OLEDB:Link Provider String
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Sets or returns a String containing additional connection options used when connecting to the external database. It is similar to the Extended Properties property in the Connection's Properties collection. See the section on External Databases for more information on options that can be specified.

	Jet OLEDB:Remote Table Name
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Sets or returns a String containing the name of the table to link to. This may be different than the local name of the table/link as specified in the Table's Name property. The default value is an empty string ("").

This property is ignored if Jet OLEDB:Create Link is False.

	Jet OLEDB:Table Hidden In Access
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Sets or returns a Boolean that indicates whether the Table will be displayed through the Microsoft Access user interface.

	Jet OLEDB:Table Validation Rule
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Sets or returns an expression that is used to validate data in when a record is changed or added to the table. This property is read-only if Jet OLEDB:Create Link is True.

Expression to be evaluated on a table in order to validate the values of a row before committing the row's changes. This operates in a fashion similar to SQL-92 CHECK clauses. This is very similar to DBPROP_JETOLEDB_COL_VALIDATIONRULE, but this rule can span multiple columns within the table,

	Jet OLEDB:Table Validation Text
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Sets or returns a String that specifies the text of the message to be displayed to the user when the validation rule is violated. This property is read-only if Jet OLEDB:Create Link is True.

ADOX Column Properties

	PRIVATE
Property Name
	Type
	Default
	Attributes
	Description

	AutoIncrement
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the values of the column are autoincrementing.

	Default
	adEmpty
	Empty
	adPropRead

adPropWrite

adPropRequired
	The default value for the column. It can be either text or an expression.

	Description
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	A description of the column.

	Fixed Length
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the column is fixed length or variable length.

	Nullable
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the column can contain a Null value.

	Jet OLEDB:Allow Zero Length
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether a zero-length string ("") can be inserted into this field. Ignored for data types that are not strings. .

	Jet OLEDB:AutoGenerate
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether a GUID should be automatically generated for the column. This property is ignored unless the column type is adGUID.

	Jet OLEDB:Column Validation Rule
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	Expression used to validate the data in a field when it's changed or added to a table. The expression must be in the form of an SQL WHERE clause without the WHERE reserved word.

	Jet OLEDB:Column Validation Text
	adBStr
	""
	adPropRead

adPropWrite

adPropRequired
	The text that will be displayed if a user tries to enter a value that does not satisfy the validation rule.

	Jet OLEDB:Compressed UNICODE Strings
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether Microsoft Jet will compress UNICODE strings on the disk. Ignored if the database is not a Microsoft Jet version 4.0 database.

	Jet OLEDB:Hyperlink
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the data in the column is a hyperlink. This property is ignored unless the column's data type is adLongVarWChar.

	Jet OLEDB:IISAM Not Last Column
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	For Installable-ISAMs, this property informs the I-ISAM that there are more columns that are going to be added to the table after this one. If you are using ITableDefinition::AddColumn or ITableDefintion::CreateTable, it is required that you set this property for every column except the last column

	Jet OLEDB:One BLOB per Page
	adBoolean
	False
	adPropRead

adPropWrite

adPropRequired
	Indicates whether the data in the column is stored on a single page (True) or can share database pages (False) to conserve space. Ignored unless the column's data type is adLongVarBinary.

ADOX Index Properties

	PRIVATE
Property Name
	Type
	Default
	Attributes
	Description

	Auto-Update
	adBoolean
	True
	adPropRead

adPropRequired
	Indicates whether the index is maintained automatically when changes are made to the corresponding base table.

	Clustered
	adBoolean
	False
	adPropRead

adPropRequired
	Indicates whether the index is clustered.

	Fill Factor
	adInteger
	100
	adPropRead

adPropRequired
	The storage utilization factor of page nodes during the creation of the index. The value ranges from 1 to 100 representing theh percentage of use of an index node.

	Initial Size
	adInteger
	4196
	adPropRead

adPropRequired
	The total number of bytes allocated to this structure at creation time.

	Null Collation
	adInteger
	4
	adPropRead

adPropRequired
	Indicates Nulls in the index are collated at the low end of the list.

	Null Keys
	adInteger
	0
	adPropRead

adPropWrite

adPropRequired
	This property corresponds to the IgnoreNulls property of the Index object. See the ADOX documentation for a description of this property.

	Primary Key
	
	
	
	

	Sort Bookmarks
	
	
	
	

	Index Type
	
	
	
	

	Unique
	
	
	
	

	Temporary Index
	
	
	
	

Appendix C: Microsoft Jet 4.0 OLE DB Provider Defined Property Values
The Jet Provider defines a number of GUIDs and property values that are for provider specific features and properties. Because they are provider specific values, ADO does not expose them in enumeration values or constants.

Use the attached file, JetOLEDBConstants.txt, to make working with these values easier in a Visual Basic for Applications development environment.

Attribute VB_Name = "JetOLEDBConstants"

Option Explicit

' Microsoft Jet database engine versions - used with the Jet OLEDB:Engine Type property

Global Const JET_ENGINETYPE_UNKNOWN = 0

Global Const JET_ENGINETYPE_JET10 = 1

Global Const JET_ENGINETYPE_JET11 = 2

Global Const JET_ENGINETYPE_JET20 = 3

Global Const JET_ENGINETYPE_JET3X = 4

Global Const JET_ENGINETYPE_JET4X = 5

Global Const JET_ENGINETYPE_DBASE3 = 10

Global Const JET_ENGINETYPE_DBASE4 = 11

Global Const JET_ENGINETYPE_DBASE5 = 12

Global Const JET_ENGINETYPE_EXCEL30 = 20

Global Const JET_ENGINETYPE_EXCEL40 = 21

Global Const JET_ENGINETYPE_EXCEL50 = 22

Global Const JET_ENGINETYPE_EXCEL80 = 23

Global Const JET_ENGINETYPE_EXCEL90 = 24

Global Const JET_ENGINETYPE_EXCHANGE4 = 30

Global Const JET_ENGINETYPE_LOTUSWK1 = 40

Global Const JET_ENGINETYPE_LOTUSWK3 = 41

Global Const JET_ENGINETYPE_LOTUSWK4 = 42

Global Const JET_ENGINETYPE_PARADOX3X = 50

Global Const JET_ENGINETYPE_PARADOX4X = 51

Global Const JET_ENGINETYPE_PARADOX5X = 52

Global Const JET_ENGINETYPE_PARADOX7X = 53

Global Const JET_ENGINETYPE_TEXT1X = 60

Global Const JET_ENGINETYPE_HTML1X = 70

' Bulk - used with the Jet OLEDB:Global Partial Bulk Ops and Jet OLEDB:Partial Bulk Ops properties

Global Const JET_BULKPARTIAL_DEFAULT = 0

Global Const JET_BULKPARTIAL_PARTIAL = 1 ' Allow partial completion of the bulk operation. Could result in inconsistent changes since operations on some rows could succeed and others could fail.

Global Const JET_BULKPARTIAL_NOPARTIAL = 2 ' Fail the bulk operation on a single error.

' Database Locking Mode - used with the Jet OLEDB:Database Locking Mode property

Global Const JET_DATABASELOCKMODE_PAGE = 0

Global Const JET_DATABASELOCKMODE_ROW = 1

' Connection Shutdown mode - used with the Jet OLEDB:Connection Control property

Global Const JET_CONNCONTROL_PASSIVESHUTDOWN = 1

Global Const JET_CONNCONTROL_NORMAL = 2

#define DBPROPVAL_JETOLEDB_TCM_FLUSH 0x01

' Security GUIDS for Access Objects

Global Const JET_SECURITY_FORMS = "{c49c842e-9dcb-11d1-9f0a-00c04fc2c2e0}"

Global Const JET_SECURITY_REPORTS = "{c49c8430-9dcb-11d1-9f0a-00c04fc2c2e0}"

Global Const JET_SECURITY_MACROS = "{c49c842f-9dcb-11d1-9f0a-00c04fc2c2e0}"

Global Const JET_SECURITY_MODULES = "{c49c8432-9dcb-11d1-9f0a-00c04fc2c2e0}"

' Jet OLE DB Provider Defined Schema Rowsets

Global Const JET_SCHEMA_REPLPARTIALFILTERLIST = "{e2082df0-54ac-11d1-bdbb-00c04fb92675}"

Global Const JET_SCHEMA_REPLCONFLICTTAGBLES = "{e2082df2-54ac-11d1-bdbb-00c04fb92675}"

Global Const JET_SCHEMA_USERROSTER = "{947bb102-5d43-11d1-bdbf-00c04fb92675}"

Global Const JET_SCHEMA_ISAMSTATS = "{8703b612-5d43-11d1-bdbf-00c04fb92675}"

Appendix D: Microsoft Jet 4.0 ANSI Reserved Words
Microsoft Jet 4.0 provides enhanced support for ANSI 92 keywords. For example, with Microsoft Jet 4.0 you can use the ANSI CREATE PROCEDURE syntax to create a new query. As a result of this support there are a number of new reserved words. If you have table or column names that conflict with one of the reserved words, you will now get a syntax error when referencing it in a query.

	PRIVATE
ABSOLUTE
	DECIMAL
	IS
	ROWS

	ACTION
	DECLARE
	ISOLATION
	SCHEMA

	ADD
	DEFAULT
	JOIN
	SCROLL

	ALL
	DEFERRABLE
	KEY
	SECOND

	ALLOCATE
	DEFERRED
	LANGUAGE
	SECTION

	ALTER
	DELETE
	LAST
	SELECT

	AND
	DESCRIBE
	LEADING
	SESSION

	ANY
	DESC
	LEFT
	SESSION_USER

	ARE
	DESCRIPTOR
	LEVEL
	SET

	AS
	DIAGNOSTICS
	LIKE
	SIZE

	ASC
	DISCONNECT
	LOCAL
	SMALLINT

	ASSERTION
	DISTINCT
	LOWER
	SOME

	AT
	DOMAIN
	MATCH
	SQL

	AUTHORIZATION
	DOUBLE
	MAX
	SQLCODE

	AVG
	DROP
	MIN
	SQLERROR

	BEGIN
	ELSE
	MINUTE
	SQLSTATE

	BETWEEN
	END
	MODULE
	SUBSTRING

	BIT
	END-EXEC
	MONTH
	SUM

	BIT_LENGTH
	ESCAPE
	NAMES
	SYSTEM_USER

	BOTH
	EXCEPT
	NATIONAL
	TABLE

	BY
	EXCEPTION
	NATURAL
	TEMPORARY

	CASCADE
	EXEC
	NCHAR
	THEN

	CASCADED
	EXECUTE
	NEXT
	TIME

	CASE
	EXISTS
	NO
	TIMESTAMP

	CAST
	EXTERNAL
	NOT
	TIMEZONE_HOUR

	CATALOG
	EXTRACT
	NULL
	TIMEZONE_MINUTE

	CHAR
	FALSE
	NULLIF
	TO

	CHARACTER
	FETCH
	NUMERIC
	TRAILING

	CHAR_LENGTH
	FIRST
	OCTET_LENGTH
	TRANSACTION

	CHARACTER_LENGTH
	FLOAT
	OF
	TRANSLATE

	CHECK
	FOR
	ON
	TRANSLATION

	CLOSE
	FOREIGN
	ONLY
	TRIM

	COALESCE
	FOUND
	OPEN
	TRUE

	COLLATE
	FROM
	OPTION
	UNION

	COLLATION
	FULL
	OR
	UNIQUE

	COLUMN
	GET
	ORDER
	UNKNOWN

	COMMIT
	GLOBAL
	OUTER
	UPDATE

	CONNECT
	GO
	OUTPUT
	UPPER

	CONNECTION
	GOTO
	OVERLAPS
	USAGE

	CONSTRAINT
	GRANT
	PARTIAL
	USER

	CONSTRAINTS
	GROUP
	POSITION
	USING

	CONTINUE
	HAVING
	PRECISION
	VALUE

	CONVERT
	HOUR
	PREPARE
	VALUES

	CORRESPONDING
	IDENTITY
	PRESERVE
	VARCHAR

	COUNT
	IMMEDIATE
	PRIMARY
	VARYING

	CREATE
	IN
	PRIOR
	VIEW

	CROSS
	INDICATOR
	PRIVILEGES
	WHEN

	CURRENT
	INITIALLY
	PROCEDURE
	WHENEVER

	CURRENT_DATE
	INNER
	PUBLIC
	WHERE

	CURRENT_TIME
	INPUT
	READ
	WITH

	CURRENT_TIMESTAMP
	INSENSITIVE
	REAL
	WORK

	CURRENT_USER
	INSERT
	REFERENCES
	WRITE

	CURSOR
	INT
	RELATIVE
	YEAR

	DATE
	INTEGER
	RESTRICT
	ZONE

	DAY
	INTERSECT
	REVOKE
	

	DEALLOCATE
	INTERVAL
	RIGHT
	

	DEC
	INTO
	ROLLBACK
	

1
2

