

AR2Pro

AR2Pro | 1

Table Of Contents

User Guide 6

Overview 6

Run-time Designer Control 6

Introduction 6

Using Run-time Designer Control 7

Adding Run-time Designer to Visual Basic 8

Adding Run-time Designer to your Project 9

Working with the Designer at Run-time 12

Saving and Loading Report Layouts 15

Using the Designer Events 18

Using Scripting 22

Custom Toolbars and Menus 25

Included Sample Projects 25

Deployment and Distribution 26

WebCache Service and ISAPI DLL 26

Introduction 26

Installation 26

Deployment 26

Using the WebCache Service 27

Developers Reference 28

ActiveReports Run-time Designer 28

ARDesigner 28

Properties 29

GridSnap 29

GridVisible 29

GridX 30

GridY 30

IsDirty 31

Locked 31

Report 32

RulerUnits 33

AR2Pro | 2

SelectedObjects 33

ToolbarsAccessible 34

ToolbarsVisible 34

ToolboxItem 35

Methods 36

ExecuteAction 36

GetSectionFromPoint 37

LoadFromObject 38

NewLayout 39

QueryStatus 39

SaveToObject 41

Events 41

Alert 42

ContextMenuOpen 43

Error 44

LayoutChanged 44

SelChange 45

StatusChange 45

ValidateChange 47

Selection Methods 48

Count 48

Item 48

WebCache Service 49

WebCache 49

CacheContent 49

CacheItem 50

IsCached 51

Item 52

Remove 52

RemoveAll 52

Count 53

WebCacheItem 53

AR2Pro | 3

Data 53

Header 54

Id 55

Persistence 55

TimeOut 56

WebCacheWorkerThread 56

TotalTimeServicingRequest 57

ThreadId 57

NumberOfRequest 58

AveragePerRequest 58

WebCacheWorkerThreads 59

Count 59

Item 60

Property List Control 60

PropList Control 60

Sorted 61

ShowToolbar 61

ShowReadOnlyProp 62

ShowObjectCombobox 62

ShowDescription 63

Properties 63

hWnd 64

ForeColor 64

Font 64

Enabled 65

Categorized 65

BorderStyle 66

BackColor 66

AllowColumnResize 66

SelectObjects 67

Refresh 67

Clear 68

AddObject 68

AR2Pro | 4

PropertyValidate 68

ObjectChanged 69

PropertyChanged 69

FetchDataDescription 69

FetchData 70

Error 70

ButtonClick 71

PropNode Object 71

AddEnum 71

ClearEnums 72

Category 72

Children 73

Description 73

Name 73

Type 74

Value 74

PropNodes Collection 75

Remove 75

Item 75

Count 76

Add 76

AR2Pro | 5

User Guide
Overview

Run-time Designer Control

WebCache Service and ISAPI DLL

Overview
ActiveReports Professional Edition includes three components that allow you to provide custom reporting
solutions to your end users. These reporting solutions can range from a built-in customized report designer to
a complete reporting and information delivery server in Internet or intranet settings.

The components include:

l Runtime Designer Control

l WebCache Service and ISAPI DLL

l Property List Control

Run-time Designer Control
Introduction

Using Run-time Designer Control

Introduction
The run-time designer control allows you to host the ActiveReports designer your application and provide
end-user report editing capabilities. The control's methods and properties provides easy access to save and
load report layouts, monitor and control the design environment and customize the look and feel to the needs
of your end users.

Persistence API

The designer control's Report property provides access to the layout elements of the report, its sections and
controls. The persistence API allows you to save and load the report layout. It includes the following
properties and methods.

LoadFromObject loads the report layout from an existing report object into the designer.

SaveToObject, apply the new layout to an existing report object.

NewLayout clears the current layout, including sections, controls and starts a new report layout. All
property settings are returned to default values.

IsDirty, this property returns whether the report has been modified since the last save or load operation. It
can be used to enable/disable a save button.

User Interface Customization

API's for User Interface customization have the goal of providing hooks into the designer that will let
developers attach their own custom menus, toolbars, field/database browsers, script editors, alert dialogs
and property sheets.

User Guide

Overview

Run-time Designer Control

Introduction

AR2Pro | 6

Toolbars and Menus

You can replace built-in menus and toolbars by first setting the ToolbarsVisible, ToolbarsAccessible properties
on the designer control to hide the built-in UI.

All menu and toolbar commands are called actions. There are over 50 actions that are defined in the designer
control.

If you are using a pull method to update your toolbar and menu states using idle-time processing, you can
use the QueryStatus method to check if a certain action (such as Edit/Cut) is enabled/disabled,
checked/unchecked.

In addition, the designer control fires StatusChange event when the status of the tools change allowing you
to update the UI to reflect these changes.

ExecuteAction method provides the ability to perform most of the designer functions with a single call.
Alternatively, actions that are not supported by ExecuteAction (ones that require a parameter such as color,
style and font settings) can be executed by setting the control or section properties directly using the Report
property.

Designer Surface

The grid settings can be modified using the following properties

l GridX and GridY determine the number of grid points in each ruler unit.

l GridVisible determines whether the grid is visible of not.

l GridSnap specifies whether the controls should snap to the visible grid points.

l RulerUnits allows you to select ruler units from either US or metric units.

Property Sheets

The runtime designer control allows you to replace the built-in property toolbox and provide your own
selection editing UI. The SelChange event fires when the user changes the current selected object in the
designer. You can retrieve a list of the selected object using the SelectedObjects collection.

ActiveReports Professional includes a property listbox ActiveX called "Data Dynamics Property ListBox" that
can be used to create customized design environments based on your users needs.

Script Editor

The built-in syntax-highlighting script editor is invoked using the ExecuteAction method and the action code
ddActionViewCodeEditor. To replace it with your own editor, create your own toolbar/menu item and use the
ActiveReport.Script, Section.Script properties to get/set the script. The scripting language is can be set using
the ActiveReport.ScriptLanguage property.

Controls Toolbox

The toolbox contains the controls that can be placed on a section. You can create your own toolbox toolbar
and use the following properties and methods to interface with the designer:

ToolboxItem property: Setting the ToolboxItem property initiates the control-add mode using the ProgID set
to the property. The user will use the rubber-band to select the area of the control and once the area is
selected the designer will add the control specified by ProgID and end the add mode by setting ToolboxItem
to an empty string.

ValidateChange Event: This event fires after any changes that are made to the report layout. It allows you to
control what the use can or cannot do in the designer control. Within the event code your can cancel the
layout change and revert it back to it's original state.

LayoutChanged Event: After the layout change (control addition, deletion is validated this event will fire with
changeType=ddLCControlAdd to notify the application that a new control has been added.

Alerts and Error Messages

ActiveReports runtime designer allows you to intercept runtime errors and alert messages and present the
user with custom notification UI. For each error or alert message ActiveReport Designer control fires an Error
or Alert event with the message id and string and gives you the option to cancel the internal display when
you handle the messages.

Using Run-time Designer Control

AR2Pro | 7

Using the Run-time Designer Control
Adding Run-time Designer to Visual Basic

Adding Run-time Designer to your Project

Working with the Designer at Run time

Saving and Loading Report Layouts

Using the Designer Events

Using Scripting

Custom Toolbars and Menus

Deployment and Distribution

Adding Run-time Designer to Visual Basic
The end-user designer is an ActiveX control; the following steps describe how to include it in the Visual Basic
IDE:

1. Start Visual Basic.

2. Choose Project > Components (Ctrl-T).

3. Choose Data Dynamics ActiveReports Run-time Designer.

Note: If the run- time designer entry does not appear in the list, make sure that Selected Items Only
is not checked. If it still does not appear, make sure ARdespro2.dll is registered by running regsvr32 on
ARdespro2.dll.

4. Click OK to close the dialog box.

Adding Run-time Designer to Visual Basic

AR2Pro | 8

5. The run-time designer icon should appear in the toolbox.

Adding Run-time Designer to your Project

1. Click on the run-time designer icon in the toolbox.

2. Place the control on the form (shown below) and size it accordingly.

The run-time designer's appearance is the same as the ActiveReports ActiveX designer but the end user will
not have direct access to the reporting events in Visual Basic. Instead, the user will use VBScript or JScript to
handle the reporting events as needed. The run-time designer includes a syntax-highlighting editor for both
languages.

The following sample demonstrates adding the run-time designer to a Visual Basic project and using
ActiveReport's viewer control to view reports designed at run time.

1. Start a new Visual Basic standard EXE project.

Adding Run-time Designer to your Project

AR2Pro | 9

2. Select the following components from Visual Basic's components list:

¡ Data Dynamics ActiveReports Runtime Designer

¡ Data Dynamics ActiveReports Viewer 2.0

¡ Microsoft Tabbed Dialog Control

3. Add the following references from Visual Basic's reference list:

¡ Data Dynamics ActiveReports 2.0

4. Select Form1 and set its properties as follows:

5. Add a SSTab control to frmMain and set its properties as follows:

6. Right-click on SSTab1 and select properties.

7. Set the TabCaption for Tab0 to Run-time Designer.

8. Set the TabCaption for Tab1 to Report Preview and select OK to close the tab control's property page.

9. Add the run-time designer to Tab0 and set its properties as follows:

10. Add the viewer control to Tab1 and set its properties as follows:

11. frmMain should look like this:

Name frmMain

Caption Simple Designer Project

Height 9465

Width 11295

Height 9015

Left 0

Tabs 2

Top 0

Width 11175

Name ard

Height 8415

Left 120

Top 480

Width 10935

Name arv

Height 8535

Left 120

Top 360

Width 10935

AR2Pro | 10

12. Add the following code to the Form_Load event:

Dim rpt As DDActiveReports2.ActiveReport

Private Sub Form_Load()
 'Set active Tab to the designer
 SSTab1.Tab = 0
 Set rpt = New ActiveReport
 'Activate all the toolbars
 ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard
End Sub

Note: When working with the designer, the toolbars cannot be customizing. The only available options

AR2Pro | 11

are ToolbarsVisible and ToolbarsAccessible. If the project requires custom toolbars, a third party toolbar
•control will need to be substituted for the runtime designer s toolbars.

13. Add the following code to the SSTab1_Click event:

Private Sub SSTab1_Click(PreviousTab As Integer)
 Select Case PreviousTab
 Case Is = 0
 prepPreview
 Case Is = 1
 prepDesigner
 End Select

End Sub

14. Add the following code to prepare the viewer control and designer when its tab is selected:

Private Sub prepPreview()
 On Error GoTo errHndl
 'Must be used to writes the designer's layout
 'to the report so it can be previewed
 ard.SaveToObject rpt
 rpt.Restart
 'Run the new report
 rpt.Run False
 'Add the report to the veiwer
 Set arv.ReportSource = rpt
 Exit Sub

 errHndl:
 MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

Private Sub prepDesigner()
 On Error GoTo errHndl

 If Not arv.ReportSource Is Nothing Then
 arv.ReportSource.Cancel
 Set arv.ReportSource = Nothing
 End If

 Exit Sub
 errHndl:
 MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description
End Sub

Note: SaveToObject must be used to save the changes made in the run-time designer to an ActiveReport
report object. You should always use that object to run and preview the report, do NOT use the

•designer s Report property to run and preview the report.

15. Save and run the project.

16. While the project is running, continue on to the next sample for a demonstration on using the designer at
run time.

Working with the Designer at Run time
This sample demonstrates the fundamentals of using the designer at run time. The simple report created in
this sample will be used to demonstrate more advanced features later on in the manual. At runtime the
designer functions similarly to the ActiveX designer but does not allow access to the report events or code.

1. Start by running the sample project created above.

2. •Place an ADO data control in the designer s detail section.

Working with the Designer at Run-time

AR2Pro | 12

3. •Connect to Nwind.mdb (see chapter 3 in the standard edition user s guide).

Note: The samples in this manual use the NorthWind database included with Microsoft Visual Basic.

4. •Set the DataControl s source property to the following SQL statement:

SELECT * FROM customers order by country

5. Right-click on the designer and select insert to add a new GroupHeader/Footer.

6. Click on the new section GroupHeader1 to select it.

7. •Modify the section s properties as follows:

8. Click on the new section GroupFooter1 to select it.

9. •Modify the section s properties as follows:

10. Add a Field control to the ghOrderGroup section and set its properties as follows:

11. Place 4 labels in the ghOrderGroup section and set their properties as follows:

12. Click and drag the following fields from the fields list into the detail section: CompanyName, City,
Country and PostalCode.

13. •Set the field s properties as follows:

14. Set the detail sections height to 285.

15. The designer should look like this:

Name ghOrderGroup
DataField Country
Height 750

Name gfOrderGroup
Height 270

Name txtGroupCountry
DataField Country
Height 360
Left 0
Top 0
Width 4230
Font .Size 12
Font .Bold True

Name lblCustomer lblCity lblCountry lblPostalCode
Caption Customer City Country PostalCode
Height 270 270 270 270
Left 0 2970 5490 7380
Top 450 450 450 450
Width 2880 2430 1800 1800

Name txtCustomer txtCity txtCountry txtPostalCode
DataField CompanyName City Country PostalCode
Height 270 270 270 270
Left 0 2970 5490 7380
Top 0 0 0 0
Width 2880 2430 1800 1800
Alignment 0-Left 0-Left 0-Left 1-Right

AR2Pro | 13

16. Click on the Report Preview tab to run and show the report.

AR2Pro | 14

17. •Switch back to the Runtime Designer tab and follow the next sample to see how the designer s layout
can be saved.

Saving and Loading Report Layouts
Reports can be saved and loaded into the designer by a variety of different methods. The easiest method is

•to use the File menu on the designer to Save or Open RPX files (ActiveReport s standard XML-formatted
report files).

Open/Save From File Menu

To save the report created in the previous sample:

1. Select the File menu.

2. Select the Save menu option.

Saving and Loading Report Layouts

AR2Pro | 15

3. •Select the project s directory, set the File name to sample report.rpx and select save.

Stop the project and restart is so the designer will return to the default setting. To load the previously
created report back into the designer:

1. Select the File menu.

2. Select the Open menu option.

3. •Select the sample report.rpx file from the project s directory and select Open.

When the RPX file is loaded, the designer will display the previously created report.

Open/Save Through Code

•A designer s layout can be saved and loaded through code by using the following methods:

Saving:

•To save a designer layout in code use the designer s SaveToObject method to save the layout to a report
•object. Once the layout is saved to the report object, the report object s SaveLayout method can be used

to save the layout to an RPX file, or byte array. Add the following code to the sample project to save the
designer layout whenever the Report Preview tab is selected.

Private Sub prepPreview()
 On Error GoTo errHndl
 'Writes the designer's layout

AR2Pro | 16

 'to the report so it can be previewed.
 ard.SaveToObject rpt
 'Saves the report object to the specified style
 rpt.SaveLayout App.Path & "\sample report.rpx", ddSOFile
 'Resets report
 rpt.Restart
 'Run the new report
 rpt.Run False
 'Add the report to the veiwer
 Set arv.ReportSource = rpt
 Exit Sub

 errHndl:
 MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

Save these changes.

Loading:

•To load a designer layout in code use the report object s Load method to load a specified RPX file and the
•designer s LoadFromObject to read the layout into the designer. Add the following code to the project to

load the report designer when the project starts, and whenever the Runtime Designer tab is selected.

Private Sub Form_Load()
 'Set active Tab to the designer
 SSTab1.Tab = 0
 Set rpt = New ActiveReport
 'Activate all the toolbars
 ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard
 'Load the saved RPX file into a report object
 rpt.LoadLayout App.Path & "\sample report.rpx"
 'Load the report object into the designer
 ard.LoadFromObject rpt
End Sub

Private Sub prepDesigner()
 On Error GoTo errHndl

 If Not arv.ReportSource Is Nothing Then
 arv.ReportSource.Cancel
 Set arv.ReportSource = Nothing
 End If

 'Load the saved RPX file into a report object
 rpt.LoadLayout App.Path & "\sample report.rpx"
 'Load the report object into the designer
 ard.LoadFromObject rpt

 Exit Sub
 errHndl:
 MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description
End Sub

Save these changes.

Loading DSR (ActiveX Designer) Files

The run- •time designer can also load ActiveReport s ActiveX Designers included within the project. To
demonstrate this capability:

1. Add an ActiveReport ActiveX Designer to the project and set its properties as follows.

Name rptSample

2. •From the designer s File menu, open the previously saved sample report.rpx file. When the RPX file is

AR2Pro | 17

opened the ActiveX designer will have the same report that was developed with the runtime designer.

3. •Modify frmMain s Form_Load event to load rptSample instead by adding the following code:

Private Sub Form_Load()
 'Set active Tab to the designer
 SSTab1.Tab = 0
 Set rpt = New ActiveReport
 'Activate all the toolbars
 ard.ToolbarsVisible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 ard.ToolbarsAccessible = ddTBToolBox + ddTBAlignment + ddTBExplorer + _
 ddTBFields + ddTBFormat + ddTBMenu + ddTBPropertyToolbox + ddTBStandard

 'Load the ActiveX designer into the run-time designer
 ard.LoadFromObject rptSample

End Sub

Do not save these changes.

Using the Designer Events
The runtime designer uses four main events to control the actions performed by the end user. These events
are LayoutChanged, SelChange, StatusChange and ValidateChange.

LayoutChanged

•LayoutChanged fires when the designer s layout is changed. The event can be used to monitor changes
made to the report layout and update any dependent data such as SQL queries or custom user interfaces.
The following list gives a description for the different layout changes.

SelChange

SelChange fires when an item in the designer is selected. The event can be used to identify the selected item
•by accessing the designer s SelectedObjects property.

StatusChange

StatusChange fires for each change in the status of the designer action. Designer actions represent the
commands typically invoked from UI elements such as toolbars or menus. The following list gives a
description for all of the actions:

Using the Designer Events

Setting Description
ddLCControlMove • •0 A control s position has changed.
ddLCControlSize • •1 A control s size has changed.
ddLCControlDelete •2 A control has been deleted.
ddLCSectionSize • •3 A section s size has changed.
ddLCSectionDelete •4 A section is deleted.
ddLCSectionMove •5 A section is moved.
ddLCReportSize • •6 The report s size is changed.
ddLCControlAdd •7 A new control has been added to the report.

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.

AR2Pro | 18

Note: The ExecuteAction method can be used to execute most of the actions above. The items that cannot

ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align: Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Underline.

AR2Pro | 19

be executed with this method are items requiring parameters, such as color, font, size and style.

ValidateChange

ValidateChange fires before an item is moved, sized or deleted. This event can be used to control the end
•user s actions. For instance, this event can be used to prevent the user from removing or moving an

important control.

These events can be demonstrated by adding the following to the sample project.

1. •Select the following components from Visual Basic s components list:

Microsoft Windows Common Controls 6.0

Microsoft Common Dialog Control 6.0

2. Add a status bar to the bottom of frmMain and change its name to sb.

3. Add a second panel to the status bar and set its AutoSize property to 1-sbrSpring.

4. Add a common dialog control to frmMain and set its name to cmDLG.

5. •Add the following main menu item to Visual Basic s menu editor:

6. Add the following submenu item to the File menu:

7. Add the following second main menu item to the menu editor:

8. Add the following submenu item to the Edit menu:

9. Modify the projects code to handle the added menu items:

Private Sub mExit_Click()
 Unload Me
End Sub

Private Sub mFont_Click()
 'Show the font dialog box
 cmDLG.Flags = cdlCFBoth
 cmDLG.ShowFont

 'Updated the selected item(s) with the new font specs
 For x = 0 To ard.SelectedObjects.Count - 1
 ard.SelectedObjects(x).Font.Name = cmDLG.FontName
 ard.SelectedObjects(x).Font.Size = cmDLG.FontSize
 ard.SelectedObjects(x).Font.Underline = cmDLG.FontUnderline
 ard.SelectedObjects(x).Font.Italic = cmDLG.FontItalic
 Next x
End Sub

10. Modify the prepPreview and prepDeisgner subs to handle the menu items:

Private Sub prepPreview()
 On Error GoTo errHndl
 'Writes the designer's layout
 'to the report so it can be previewed.
 ard.SaveToObject rpt
 'Saves the report object to the specified style
 rpt.Save App.Path & "\sample report.rpx", ddSOFile
 'Resets report

Caption &File
Name mFile

Caption &Exit
Name mExit

Caption &Edit
Name mEdit

Caption &Font
Name mFont

AR2Pro | 20

 rpt.Restart
 'Run the new report
 rpt.Run False
 'Add the report to the veiwer
 Set arv.ReportSource = rpt

 'Disable menu items in preview mode
 mFile.Enabled = False
 mEdit.Enabled = False

 Exit Sub

 errHndl:
 MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

Private Sub prepDesigner()
 On Error GoTo errHndl

 If Not arv.ReportSource Is Nothing Then
 arv.ReportSource.Cancel
 Set arv.ReportSource = Nothing
 End If

 'Load the saved RPX file into a report object
 rpt.Load App.Path & "\sample report.rpx"
 'Load the report object into the designer
 ard.LoadFromObject rpt

 'Enable the menu items in design mode
 mFile.Enabled = True
 mEdit.Enabled = True

 Exit Sub
 errHndl:
 MsgBox "Error in Design Preview: " & Err.Number & " " & Err.Description
End Sub

11. Add the following code to the project to handle each of the above events:

Private Sub ard_LayoutChanged(ByVal changedObject As Object, ByVal changeType As DDActiveReportsDesignerCtl.ayoutChangeTypes)
 Dim cnv As DDActiveReports2.Canvas
 Dim w As Long, h As Long
 Dim sLCaption As String

 'The following code checks to see if a lable has been added
 'If a label is added, it will prompt the user for a caption
 'And set the lable's width and height to fit the caption

 'Check if a label as been added
 If TypeOf changedObject Is DDActiveReports2.Label And changeType = ddLCControlAdd Then
 'Get a caption for the label
 sLCaption = InputBox("Enter a Caption for the Label", "Enter Caption")

 'If no caption is given, use the added object's name
 If sLCaption = "" Then sLCaption = changedObject.Name

 'Set the added label's caption to the given caption
 changedObject.Caption = sLCaption

 'Use the canvas object to get a width and height for the caption
 Set cnv = New DDActiveReports2.Canvas

 'makes sure the canvas is measures with the same font size
 cnv.Font = changedObject.Font
 cnv.MeasureText sLCaption, w, h

AR2Pro | 21

 'Change the added controls width and height
 changedObject.Width = w
 changedObject.Height = h

 'unload the canvas
 Set cnv = Nothing
 End If

End Sub

Private Sub ard_SelChange()
 Dim sControl As String
 'Following code displays the selected label or field's name,
 'Top, left, height and width
 If ard.SelectedObjects.Count = 1 Then
 If TypeOf ard.SelectedObjects(X) Is DDActiveReports2.Field Or _
 TypeOf ard.SelectedObjects(X) Is DDActiveReports2.Label Then
 sControl = ard.SelectedObjects(X).Name
 sControl = sControl & " Top:" & ard.SelectedObjects(X).Top
 sControl = sControl & " Left:" & ard.SelectedObjects(X).Left
 sControl = sControl & " " & ard.SelectedObjects(X).Height & _
 " twips X "
 sControl = sControl & ard.SelectedObjects(X).Width & " twips"
 End If
 Else
 sControl = ""
 End If
 sb.Panels(2).Text = sControl
End Sub

Private Sub ard_StatusChange(ByVal action As DDActiveReportsDesignerCtl.DesignerActionTypes)
 Select Case action
 Case ddActionFoFontName
 'Enable/Disable the font menu option
 mFont.Enabled = ard.QueryStatus(ddActionFoFontName)
 End Select
End Sub

Private Sub ard_ValidateChange(ByVal changedObject As Object, ByVal changeType As DDActiveReportsDesignerCtl.LayoutChangeTypes, Cancel As Boolean)
 'The following code prevents the end user from deleting the
 'Data control
 If TypeName(changedObject) = "DataControl" Then
 If changeType = ddLCControlDelete Then
 MsgBox "You are not allowed to delete the report's data control", _
 vbCritical, "Cannot Remove Control"
 Cancel = True
 End If
 End If
End Sub

12. Save and run the project.

Using Scripting
When working with RPX files, all necessary report code must be included with the RPX file in the form of a
script because any Visual Basic code used to create the report in not saved into the RPX file. Also, the end
user will need to use an ActiveScripting language to make any type of programmatic changes to a report.

Note: • For a more detailed explanation of scripting examine chapter 14 in the standard edition user s guide.

ActiveReports provides two different methods to help make scripting easier and more versatile with Visual
•Basic. The report object s AddCode method allows code to be added, in the form of a string, at runtime and

the AddNamedItem method adds functions and subs contained inside the Visual Basic code to the scripting
name space. Continuing with the designer sample we will use both methods to demonstrate how each item is
setup. Because RPX files are not secure files, it is highly suggested that all sensitive information be left out of

Using Scripting

AR2Pro | 22

the RPX file. Since the project is currently using a data control, with the connection string specified, the
connection sting will be visible in the RPX file. It is highly recommended to use AddNamedItem to allow the
Visual Basic project to retrieve the Recordset and pass this to the DataControl. The following demonstrates
how to convert the sample project to take advantage of the AddNamedItem method.

Using AddNamedItem

1. Add a class module to the project and set its name to clsFunctions.

Note: When working with AddNameItem, the subs and functions must be wrapped within a class.

2. •In Visual Basic s references list, select the newest Microsoft ActiveX Data Objects Library.

3. Add the following function to clsFunctions:

Public Function getRSet() As ADODB.Recordset
 Dim rs As ADODB.Recordset
 Dim cn As ADODB.Connection
 Dim cnnString As String
 On Error GoTo errHndl

 Set cn = New ADODB.Connection
 Set rs = New ADODB.Recordset

 'Connect to DB and get recordset
 cnnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB;Persist Security Info=False"
 cn.Open cnnString
 rs.Open "Select * from customers order by country", cn
 Set getRSet = rs

 Set rs = Nothing
 Set cn = Nothing

 Exit Function

 errHndl:
 MsgBox "Unable to get recordset: " & Err.Number & ": " & Err.Description
 Set rs = Nothing
 Set cn = Nothing
End Function

4. Make the following modifications to the prepViewer sub to make the report object and script aware of the
added class:

Private Sub prepPreview()
 On Error GoTo errHndl
 'Writes the designer's layout
 'to the report so it can be previewed.
 ard.SaveToObject rpt
 'Saves the report object to the specified style
 rpt.Save App.Path & "\sample report.rpx", ddSOFile
 'Resets report

 'Activate the Script debugger and refresh the script
 rpt.ScriptDebuggerEnabled = True
 rpt.ResetScripts

 ' Use AddNamedItem to add the function to the scripting name space
 rpt.AddNamedItem "vbCode", New clsFunctions

 rpt.Restart
 'Run the new report
 rpt.Run False
 'Add the report to the veiwer
 Set arv.ReportSource = rpt

 'Disable menu items in preview mode
 mFile.Enabled = False
 mEdit.Enabled = False

AR2Pro | 23

 Exit Sub

 errHndl:
 MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

5. Save and run the project.

6. Select DataControl1 on the designer and clear out the ConnectionString and Source string.

7. Select the Script icon and add the following code to the ActiveReport Document OnDataInitialize sub:

Sub OnDataInitialize
 set rpt.datacontrol1.recordset = vbcode.getrset
End Sub

8. Select the Report Preview tab to use the new function.

Using AddCode

1. Add the following code to clsFunctions:

Public Function IIf(Expression, TruePart, FalsePart)
 IIf = VBA.IIf(Expression, TruePart, FalsePart)
End Function

Public Function Format(Expression, sFormat)
 Format = VBA.Format(Expression, sFormat)
End Function

2. Add the following code to frmMain:

Private Function HelperCode() As String
 Dim sCode As String
 sCode = ""
 sCode = sCode & _
 "Public Function IIf(expr, exprTrue, exprFalse)" & vbCrLf & _
 "If expr Then IIf = exprTrue Else IIf = exprFalse" & vbCrLf & _
 "End Function"

 sCode = sCode & _
 "Public Function Format(expr, fmt)" & vbCrLf & _
 "Format = vbCode.Format(expr, fmt)" & vbCrLf & _
 "End Function"
End Function

3. Add the following code to prepPreview to use the AddCode method:

Private Sub prepPreview()
 On Error GoTo errHndl
 'Writes the designer's layout
 'to the report so it can be previewed.
 ard.SaveToObject rpt
 'Saves the report object to the specified style
 rpt.Save App.Path & "\sample report.rpx", ddSOFile
 'Resets report

 'Activate the Script debugger and refresh the script
 rpt.ScriptDebuggerEnabled = True
 rpt.ResetScripts

 'Add IIf helper code
 rpt.AddCode HelperCode()

 'Use AddNamedItem to add the function to the scripting name space

AR2Pro | 24

 rpt.AddNamedItem "vbCode", New clsFunctions

 rpt.Restart
 'Run the new report
 rpt.Run False
 'Add the report to the veiwer
 Set arv.ReportSource = rpt

 'Disable menu items in preview mode
 mFile.Enabled = False
 mEdit.Enabled = False

 Exit Sub

 errHndl:
 MsgBox "Error Previewing the Report: " & Err.Number & " " & Err.Description
End Sub

4. Save and run the project.

Note: The samples contained in this section are designed to demonstrate the fundamentals for using the
end-user report designer. More advanced samples can be found in the sample directory and in Data

•Dynamics online knowledgebase at http://www.datadynamics.com/kb.

Custom Toolbars and Menus
The runtime designer toolbars and menus cannot be customized during development. You can control the
visibility and accessibility of individual toolbars using ToolbarsVisible and ToolbarsAccessible properties. You
cannot remove any of the tools from the toolbars.

If you need to present your end users with a different user interface elements you should disable and hide all
the toolbars by setting ToolbarsVisible and ToolbarsAccessible to 0 and create your own toolbars and menus.

StatusChange event and ExecuteAction and QueryStatus methods provide complete control over the current
state of available UI options. In addition, you can customize the alerts and error messages by handling the
Alert event.

In addition, you can create your own custom or localized object context menus in the ContextMenuOpen
event.

The "Diamond Reports" sample included in your samples directory provides a comprehensive example for
creating custom toolbars and menus.

Included Sample Projects
The ActiveReports Pro installation includes a few specialized sample projects to demonstrate the different
techniques and capabilities available with the professional edition of ActiveReports.

The code behind the sample projects demonstrates many techniques available with the professional edition.
Use these samples along with the following tutorial to help you understand the use of the various
ActiveReports Professional components.

Following is a listing of these sample projects and the features they demonstrate:

Custom Toolbars and Menus

Included Sample Projects

Name Description
1 Diamond

Reports
An advanced project demonstrating the full possibilities of the run-time designer.
Includes custom toolbars and menus that implement the functionality of the built-in
counterparts.

2 Property
List

Demonstrates using the property list box.

3 Simple
Designer

Demonstrates using the run-time designer, property list box and preview form.

AR2Pro | 25

Deployment and Distribution
You need to include the following files on all clients when distributing ActiveReports Pro.

Web Server Distribution

To serve reports to clients in a web environment, your web server should have arview2.cab if the project
uses the ActiveReports Viewer Control and arpro2.cab if the project uses the end user designer control. You
should also copy and register any export DLLs as needed.

WebCache Service and ISAPI DLL
Introduction

Installation

Deployment

Using the WebCache Service

Introduction
The WebCache service and ISAPI DLL are used to manage report output on web servers running Microsoft®
Internet Information Servers. The caching service is a COM component that runs as service on the web
server and caches the report's output. The ISAPI DLL receives requests for cache items, retrieves the items
from the caching service and delivers them to the client browsers.

Installation
The setup program will automatically install WebCache.dll and WebCacheService.exe to your machine. The
service defaults will be set to use the system account and automatic startup.

Deployment and Distribution

File Name Description
Arpro2.DLL The Reporting Engine.
ARVIEW2.ocx Only if you are using our ActiveX Viewer.
ARdespro2.dll Only if you are using the end-user report designer.
AB2DLL.dll If you are using the run-time designer (not supported on the web).
PDFExpt.DLL PDF Export Filter (when using PDF exporting).
RTFExpt.DLL RTF Export Filter (when using RTF exporting).
ExclExpt.DLL Excel Export Filter (when using Excel exporting).
TextExpt.DLL Text Export Filter (when using Text exporting).
HTMLExpt.DLL HTML Export Filter (when using HTML exporting).
TiffExpt.dll Tiff Export Filter (when using Tiff exporting).
WebCache.dll Only if you are using the WebCache service.

WebCache Service and ISAPI DLL

Introduction

Installation

Deployment

AR2Pro | 26

Deployment
To deploy the WebCacheService, you can add the WebCacheService.exe file to your setup project as a service
or manually register the service using:

WebCacheService.exe - •RegServer Service

To uninstall, stop the service using the Control Panel / Administrative Tools / Services tool and then use

WebCacheService.exe -UnregServer

Note: • If you are using Wise InstallMaster, don t use the service installation feature, instead add the
following commands to your install script:

Execute Program %OCXPATH%\WebCacheService.exe -RegisterServer -Service
 •Add Execute path: %OCXPATH%\WebCacheService.exe UnregServer to INSTALL.LOG

To configure the number of threads that the WebCacheService creates on startup set the Start
Parameters /Threads=NumberOfThreads on the general property page of the service (Control Panel /
Services).

Using the WebCache Service
The WebCache service can be utilized using either of the following methods:

1. CacheContent method allows you to cache any type of content including report output (RDF files) and
export filters byte array output. The CacheContent method specifies the content type and the ISAPI filter
would serve the cached items with the content and header specified in this method.

2. Excel and PDF Export Filters expose an ExportWebCache method that allows a direct export into the
WebCache service objects and returns the proper cache item ids to redirect the client browser.

Using the WebCache Service

AR2Pro | 27

Developers Reference
ActiveReports Run-time Designer

WebCache Service Objects

Property List Objects

ActiveReports Run-time Designer
ARDesigner Control

Selection Object

ARDesigner

Developers Reference

ActiveReports Run-time Designer

ARDesigner

Name Type Description
GridSnap Property Determines whether the controls should be snapped to the grid points.
GridVisible Property Determines whether the drawing grid should be visible.
GridX Property Determines how coarse the designer grid should be.
GridY Property Determines how coarse the designer grid should be.
IsDirty Property Returns whether report has been modified since last layout was loaded

or initialized.
Locked Property Specifies whether the controls are locked in place.
Report Property Returns a reference to the designer's report object.
RulerUnits Property Sets or returns ruler units (Inches, Centimeters).
SelectedObjects Property Returns collection of selected objects.
ToolbarsAccessible Property Bit flags for each toolbar to determine whether a toolbars is accessible

by the end user.
ToolbarsVisible Property Bit flags for each toolbar to determine whether a toolbar is visible.
ToolboxItem Property Sets or returns PROGID of active toolbox item.
ExecuteAction Method Executes a specified designer command.

object.ExecuteAction(action As DesignerActionTypes)
LoadFromObject Method Reads the layout from a report object into designer control.

object.LoadFromObject(Report As IActiveReport)
NewLayout Method Discards the current report layout and creates a new blank layout.

object.NewLayout()
QueryStatus Method Queries the designer for the status of one or more commands.

object.QueryStatus(action As DesignerActionTypes)
SaveToObject Method Write the layout from the designer to a report object.

object.SaveToObject(Report As IActiveReport)
Alert Event Fires when an alert requesting user intervention is about to be

displayed.
ContextMenuOpen Event Fires before a context menu is opened.
Error Event Fires when an error occurs in the designer component.
LayoutChanged Event Fires when the report layout is changed.
SelChange Event Fires when selection changes.
StatusChange Event Fires for each change in the status of the designer actions.
ValidateChange Event Fires before an item is moved, sized or deleted.

AR2Pro | 28

ARDesigner Properties
GridSnap

GridVisible

GridX

GridY

IsDirty

Locked

Report

RulerUnits

SelectedObjects

ToolbarsAccessible

ToolbarsVisible

ToolboxItem

GridSnap
Determines whether the controls should be snapped to the grid points.

Syntax

object.GridSnap [= value]

The GridSnap property syntax has the following parts

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

GridVisible
Determines whether the drawing grid should be visible.

Syntax

Properties

GridSnap

Part Description
object A valid ARDesigner object
value A Boolean value.

Setting Description
True Default - The controls are snapped to the grid points.
False The controls can be sized and positioned freely.

GridVisible

AR2Pro | 29

object.GridVisible [= value]

The GridVisible property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

GridX
Determines how coarse the designer grid should be.

Syntax

object.GridX [= value]

The GridX property syntax has the following parts:

Data Type

Integer

Remarks

Default value = 16

GridY
Determines how coarse the designer grid should be.

Syntax

object.GridY [= value]

The GridY property syntax has the following parts

Data Type

Part Description
object A valid ARDesigner object
value A Boolean value.

Setting Description
True Shows the grid in the designer.
False Hides the grid in the designer.

GridX

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of horizontal grid points per ruler unit.

GridY

Part Description
object A valid ARDesigner object
value An Integer value that represents the number of vertical grid points per ruler unit.

AR2Pro | 30

Integer

Remarks

Default value = 16

IsDirty
Returns whether report has been modified since last layout was loaded or initialized.

Syntax

object.IsDirty [= value]

The IsDirty property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Example

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
 If ARDesigner1.IsDirty Then
 ' Ask if report should be saved
 Dim iSave As Integer
 iSave = MsgBox("Save changes to the report?", _
 vbYesNoCancel, "Save")
 Select Case iSave
 Case vbYes
 'Save the Report
 FileSave
 Cancel = 0
 Case vbNo
 'Continue without saving
 Cancel = 0
 Case vbCancel
 'Cancel Unload
 Cancel = 1
 End Select
 End If
End Sub

Locked
Specifies whether the controls are locked in place.

Syntax

IsDirty

Part Description
object A valid ARDesigner object
value A Boolean value.

Setting Description
True The report layout has been modified.
False The report layout has not been modified.

Locked

AR2Pro | 31

object.Locked [= value]

The Locked property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Example

' If the controls are locked mark the menu item as checked
mnuLocked.Checked = ARDesigner1.Locked

Remarks

Default value = False

Report
Returns a reference to the designer's report object.

Syntax

object.Report [= value]

The Report property syntax has the following parts:

Data Type

IActiveReport

Example

'Add a data control to the designer using the Report object
Dim ctl As DataControl
With ARDesigner.Report.Sections("Detail").Controls
Set ctl = .Add("DDActiveReports2.DataControl")
 ctl.Name = "dc"
 ctl.Top = 0: ctl.Left = 0
 ctl.Tag = ""
End With

Remarks

This report object is used to gain access to the layout and controls properties. Do not use it to run the report
and preview it. Use a separate ActiveReport variable and save the layout to it using the SaveToObject
method.

Part Description
object A valid ARDesigner object
value A Boolean value.

Setting Description
True The controls cannot be moved or sized.
False The controls can be moved or sized.

Report

Part Description
object A valid ARDesigner object
value An ActiveReport reference.

AR2Pro | 32

RulerUnits
Sets or returns ruler units (Inches, Centimeters).

Syntax

object.RulerUnits [= value]

The RulerUnits property syntax has the following parts:

Settings

The settings for value are:

Data Type

ddRulerUnits

Remarks

Default value = 0 - US Setting.

SelectedObjects
Returns collection of selected objects.

Syntax

Set value = object.SelectedObjects

The SelectedObjects property syntax has the following parts:

Data Type

Selection

Example

Private Sub ARDEsigner1_SelChange()
 Dim lSel As Long
 Dim arrSel()
 'plist is a custom PropertyList control
 plist.Clear

 'When selection changes, add selected objects to the custom
 'property list
 If ARDesigner1.SelectedObjects.Count > 0 Then
 ReDim arrSel(ARDesigner1.SelectedObjects.Count - 1)

RulerUnits

Part Description
object A valid ARDesigner object
value A valid ddRulerUnits setting.

Setting Description
ddRulerUS 0 - Inches.
ddRulerMetric 1 - Centimeters.

SelectedObjects

Part Description
object A valid ARDesigner object
value A Selection object.

AR2Pro | 33

 For lSel = 0 To ARDesigner1.SelectedObjects.Count - 1
 Set arrSel(lSel) = ARDesigner1.SelectedObjects(lSel)
 Next
 plist.SelectObjects arrSel
 End If
End Sub

ToolbarsAccessible
Bit flags for each toolbar to determine whether a toolbars is accessible by the end user. One additional flag
for the context menus or a property to enable or disable the context menus.

Syntax

object.ToolbarsAccessible [= value]

The ToolbarsAccessible property syntax has the following parts

Settings

The settings for value are:

Data Type

ToolbarIdentifiers

Example

Private Sub Form_Load()
 'Disable and hide the built-in toolbars
 ARDesigner1.ToolbarsAccessible = 0
 ARDesigner1.ToolbarsVisible = 0
End Sub

Remarks

The customization option for the toolbars is available only when all toolbars are accessible. If any of the
toolbars is not accessible the built-in customization will be disabled.

ToolbarsVisible
Bit flags for each toolbar to determine whether a toolbar is visible. The end user can show/hide the toolbars
from the toolbar's context menu.

ToolbarsAccessible

Part Description
object A valid ARDesigner object
value A ToolbarIdentifiers setting.

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.

ToolbarsVisible

AR2Pro | 34

Syntax

object.ToolbarsVisible [= value]

The ToolbarsVisible property syntax has the following parts:

Settings

The settings for value are:

Data Type

ToolbarIdentifiers

Example

Private Sub Form_Load()
 'Disable and hide the built-in toolbars
 ARDesigner1.ToolbarsAccessible = 0
 ARDesigner1.ToolbarsVisible = 0
End Sub

ToolboxItem
Sets or returns PROGID of active toolbox item. Set to empty to end control mode.

Syntax

object.ToolBoxItem [= value]

The ToolboxItem property syntax has the following parts:

Data Type

String

Example

Private Sub tbToolbox_ButtonClick(ByVal Button As MSComctlLib.Button)
 Select Case Button.key
 Case "tbxSelect": ARDesigner1.ToolBoxItem = ""
 Case "tbxLabel": ARDesigner1.ToolBoxItem = "DDActiveReports2.Label"
 Case "tbxField": ARDesigner1.ToolBoxItem = "DDActiveReports2.Field"

Part Description
object A valid ARDesigner object
value A ToolbarIdentifiers setting.

Setting Description
ddTBMenu 1 - Main menu toolbar.
ddTBToolBox 2 - Controls toolbox.
ddTBStandard 4 - Standard toolbar.
ddTBAlignment 8 - Alignment toolbar.
ddTBFormat 16 - Format toolbar.
ddTBExplorer 32 - Report explorer toolbar.
ddTBFields 64 - Fields list toolbar.
ddTBPropertyToolbox 128 - Property toolbox.

ToolboxItem

Part Description
object A valid ARDesigner object
value A String value.

AR2Pro | 35

 Case "tbxCheckbox": ARDesigner1.ToolBoxItem = "DDActiveReports2.Checkbox"
 Case "tbxImage": ARDesigner1.ToolBoxItem = "DDActiveReports2.Image"
 Case "tbxLine": ARDesigner1.ToolBoxItem = "DDActiveReports2.Line"
 Case "tbxShape": ARDesigner1.ToolBoxItem = "DDActiveReports2.Shape"
 Case "tbxRichedit": ARDesigner1.ToolBoxItem = "DDActiveReports2.RichEdit"
 Case "tbxFrame": ARDesigner1.ToolBoxItem = "DDActiveReports2.Frame"
 Case "tbxSubreport": ARDesigner1.ToolBoxItem = "DDActiveReports2.Subreport"
 Case "tbxPageBreak": ARDesigner1.ToolBoxItem = "DDActiveReports2.PageBreak"
 Case "tbxOLE": ARDesigner1.ToolBoxItem = "DDActiveReports2.OLE"
 Case "tbxBarcode": ARDesigner1.ToolBoxItem = "DDActiveReports2.Barcode"
 End Select
End Sub

Remarks

This property is used to implement a custom toolbox toolbar.

ARDesigner Properties
ExecuteAction

GetSectionFromPoint

LoadFromObject

NewLayout

QueryStatus

SaveToObject

ExecuteAction
Executes a specified designer command. You can use this method when implementing a custom toolbar or
menu, this method will perform the report actions in response to the toolbar or menu items.

Syntax

object.ExecuteAction(action As DesignerActionTypes)

The ExecuteAction method syntax has the following parts:

Settings

The settings for action are:

Methods

ExecuteAction

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes - A valid action setting.

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.

AR2Pro | 36

Example

'Edit > Cut menu item
Private Sub miECut_Click()
 ARDesigner1.ExecuteAction ddActionECut
End Sub

Remarks

Font and color actions are not supported in the ExecuteAction method. In order to set font and color
properties you should directly access the selected object and set those properties.

GetSectionFromPoint

ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.

GetSectionFromPoint

AR2Pro | 37

Returns the section name at a specified point and converts the point coordinates to section relative
coordinates. Returns empty when the specified point is not within a section area.

Syntax

[sectionName =]object.GetSectionFromPoint(x As Single, y As Single)

The GetSectionFromPoint method syntax has the following parts:

Returns

String

Example

Private deltax As Single, deltay As Single
' This code implements a label Drag Drop on the designer control.
' It adds a new control at the dropped location.
Private Sub ard_DragDrop(Source As Control, X As Single, Y As Single)
 Dim sSec As String
 Dim secTarget As Object
 Dim ctl As Object

 X = X - deltax
 Y = Y - deltay

 sSec = ard.GetSectionFromPoint(X, Y)
 If sSec <> "" Then
 Set secTarget = ard.Report.Sections(sSec)
 Set ctl = secTarget.Controls.Add("DDActiveReports2.Label")
 ctl.Left = X
 ctl.Top = Y
 ctl.Width = lblDrag.Width
 ctl.Height = lblDrag.Height
 ctl.BackStyle = 1
 ctl.BackColor = &HC0C0FF
 If (ctl.Left + ctl.Width) > ard.Report.PrintWidth Then
 ard.Report.PrintWidth = ctl.Left + ctl.Width
 End If
 If (ctl.Top + ctl.Height) > secTarget.Height Then
 secTarget.Height = ctl.Top + ctl.Height
 End If
 End If
End Sub

Private Sub ard_DragOver(Source As Control, X As Single, Y As Single, State As Integer)
 Dim sSec As String
 X = X - deltax
 Y = Y - deltay

 sSec = ard.GetSectionFromPoint(X, Y)
 lstState.AddItem sSec & " : " & Str$(X) & "," & Str$(Y)
End Sub

Remarks

This method is used when adding controls into specific sections using drag and drop events.

Part Description
object A valid ARDesigner object.
x, y Single - Specifies the point coordinates of which to retrieve the section name. The values

are converted to section relative coordinates on return from the method.
sectionName String - Returns the section name that is at the specified point coordinates.

LoadFromObject

AR2Pro | 38

LoadFromObject
Reads the layout from a report object into designer control.

Syntax

object.LoadFromObject(Report As IActiveReport)

The LoadFromObject method syntax has the following parts:

Example

'Load a report layout file into an activereport instance
'then load it into the designer control.
'Alternatively, you can use the Load method of the deisgner's Report property
Dim rpt As ActiveReport
Set rpt = New ActiveReport
rpt.Load App.Path & "\test.rpx"
ARDesigner1.LoadFromObject(rpt)

NewLayout
Discards the current report layout and creates a new blank layout.

Syntax

object.NewLayout()

The NewLayout method syntax has the following parts:

Example

'File > New, Menu Item
Private Sub miFNew_Click()
 ARDesigner1.NewLayout
End Sub

QueryStatus
Queries the object for the status of one or more commands.

Syntax

object.QueryStatus(action As DesignerActionTypes)

The QueryStatus method syntax has the following parts:

Settings

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

NewLayout

Part Description
object An expression evaluating to an object of type ARDesigner.

QueryStatus

Part Description
object An expression evaluating to an object of type ARDesigner.
action DesignerActionTypes

AR2Pro | 39

The settings for action are:

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.

AR2Pro | 40

Example

'Update edit menu items on status change.
Private Sub ARDesigner1_StatusChange(ByVal action As DDActiveReportsDesignerCtl.DesignerActionTypes)
 Select Case action
 Case ddActionECopy
 miECopy.Enabled = ((ARDesigner1.QueryStatus(ddActionECopy) And ddStatEnabled) = ddStatEnabled)
 miECopy.Checked = ((ARDesigner1.QueryStatus(ddActionECopy) And ddStatChecked) = ddStatChecked)
 ' Case
 End Select
End Sub

SaveToObject
Write the layout from the designer to a report object.

Syntax

object.SaveToObject(Report As IActiveReport)

The SaveToObject method syntax has the following parts:

Example

'module variable
 Dim rpt As DDActiveReports2.ActiveReport

Private Sub PreviewReport()
 On Error GoTo ehPreviewReport
 ard.SaveToObject rpt
 rpt.Restart
 rpt.Run False
 Set arv.ReportSource = rpt
 Exit Sub

 ehPreviewReport:
 MsgBox Str(Err.Number) & " - " & Err.Description, vbOKOnly, "Error: PreviewReport"
 End Sub

Remarks

You must use the SaveToObject to save the report designer to an ActiveReport instance before running the
report.

ARDesigner Properties
Alert

ContextMenuOpen

ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline.

SaveToObject

Part Description
object An expression evaluating to an object of type ARDesigner.
Report IActiveReport

Events

AR2Pro | 41

Error

LayoutChanged

SelChange

StatusChange

ValidateChange

Alert
Fires when before an alert message box that requires user intervention is displayed. You can use this event
to replace the built-in message boxes with your own.

Syntax

Sub object_Alert(id As Integer, prompt As String, buttons As Long, result)

The Alert event syntax has the following parts:

Settings

The id parameter has the following settings:

Alert

Part Description
id Integer - Specifies the alert message id.
prompt String - Specifies the message string to be displayed.
buttons Long - Specifies the number and style of buttons to be displayed.
result Long - used to set the return value of the event when the alert is handled by the event.

Setting Description
ddARAlertControlNotRegistered 1 - Report contains a control that is not registered on the client

machine.
ddARAlertDataSource 2 - Data source returned error when updating property sheet.
ddARAlertDAOSettings 3 - DAO data control settings are incorrect.
ddARAlertDAO 4 - DAO returned error when opening the connection or

recordset.
ddARAlertFieldList 5 - A database error occurred when attempting to refresh the

field list window.
ddARAlertInvalidSectionForDataControl 6 - A data control cannot be added to a non-detail section.
ddARAlertDataControlAlreadyExists 7 - User tried to drop more than one data control into the detail

section.
ddARAlertControlCreateFailed 8 - The ActiveX control can't be hosted in ActiveReports
ddARAlertAB2DLLMissing 9 - AB2DLL.DLL toolbars library is missing.
ddARAlertCantUndoDelete 10 - The edit/delete operation can't be undone
ddARAlertDeleteFailed 11 - The edit/delete operation failed.
ddARAlertEditCutFailed 12 - The edit/cut operation failed.
ddARAlertEditCopyFailed 13 - The edit/copy operation failed.
ddARAlertDuplicateStyleName 14 - User tried to create a style that already exists.
ddAlertCantDeleteStyle 15 - User tried to delete the normal style.
ddAlertRTF 16 - RTF control alert.
ddARAlertRTFDeleteField 17 - Confirm deleting an RTF merge field.
ddARAlertCantDeleteDetailSection 18 - Detail section cannot be deleted.
ddARAlertDeleteSectionPrompt 19 - Confirm deleting a section.
ddARAlertSaveLayoutFailed 20 - Unable to save the report layout.

AR2Pro | 42

Example

Private Sub ard_Alert(ByVal id As Integer, ByVal prompt As String, ByVal buttons As Long, result As Variant)
 If id = ddARAlertControlNotRegistered Then
 MsgBox "Report contains an unregistered control." & _"
 "Contact 999-999-9999 with the following information " & _
 vbCrlf & Str(id) & " - " & prompt
 result = 0
 End If
 End Sub

ContextMenuOpen
Fires before a context menu is opened.

Syntax

object_ContextMenuOpen(sourceObject As Object,
menuType As ContextMenuTypes,
Cancel As Boolean)

The ContextMenuOpen event syntax has the following parts:

Settings

The settings for menuType are:

Example

'Example implementation of the ContextMenuOpen event
'The mnuReport, mnuControl, mnuSection and mnuRichEdit
'are menu items created using VB's Menu editor
'You can use the sourceObject properties to enable/disable
'your custom menu options
Private Sub ARDesigner1_ContextMenuOpen(ByVal sourceObject As Object, ByVal menuType As DDActiveReportsDesignerCtl.ContextMenuTypes, Cancel As Boolean)
 Select Case menuType
 Case ddCMControl
 PopupMenu mnuControl
 Case ddCMReport
 PopupMenu mnuReport
 Case ddCMSection
 PopupMenu mnuSection
 Case ddCMRichedit
 PopupMenu mnuRichEdit
 End Select
 Cancel = True

ContextMenuOpen

Part Description
sourceObject Object - A reference to the object that is opening the menu.
menuType ContextMenuTypes - Specifies the type of menu that will be opened for this sourceObject.
Cancel Boolean - determines whether the default menu handler should be cancelled. This

parameter should be set to True to disable or replace built in context menus.

Setting Description
ddCMSection 0 - Section context menu.
ddCMControl 1 - Control context menu.
ddCMReport 2 - Report object context menu.
ddCMRTFEditMode 3 - RichEdit context menu.

AR2Pro | 43

End Sub

Error
Fires when an error occurs in the designer component. This event allows you to create your own error
handler and display localized error message boxes.

Syntax

object_Error((Number As Integer, Description As String, Scode As Long, Source As String, HelpFile As
String, HelpContext As Long, CancelDisplay As Boolean))

The Error event syntax has the following parts:

Example

Private Sub ARDesigner1_Error(ByVal Number As Integer, Description As String, _
 ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, CancelDisplay As Boolean)
 App.LogEvent Format(Now, "mm/dd/yyyy Hh:Nn") & Str(Number) & " - " & Description
 CancelDisplay = True
End Sub

LayoutChanged
Fires when the layout is changed. You can use this event to monitor changes to the report layout and update
any dependent data such as SQL queries or custom user interfaces (report explorers, group sections dialog,
etc.)

Syntax

object_LayoutChanged(changedObject As Object, changeType As LayoutChangeTypes)

The LayoutChanged event syntax has the following parts:

Settings

The settings for changeType are:

Error

Part Description
object An expression evaluating to an object of type ARDesigner.
Number Integer - Error number
Description String - Error description.
Scode Long - Result code.
Source String - Source of the error if applicable.
HelpFile String - Help file
HelpContext Long - Error context id, in the help file.
CancelDisplay Boolean - Set CancelDisplay = True to cancel the built in error dialog and replace it with

your own.

LayoutChanged

Part Description
object An expression evaluating to an object of type ARDesigner.
changedObject Object - a reference to the control or object that caused the layout change.
changeType LayoutChangeTypes - specifies the type of change.

AR2Pro | 44

Example

Private Sub ARDesigner1_LayoutChanged(changedObject As Object, _
 changeType As LayoutChangeTypes)
 'If a group section was added or removed then display a grouping dialog
 If changeType = ddLCSectionAdd Then
 If changedObject.Type = ddSTGroupHeader Then
 frmGroups.Show
 End If
 End If
 End Sub

SelChange
Fires when selection changes. You can use the SelectedObjects property to inspect the current selection.

Syntax

object_SelChange()

Example

'SelChange event handler
 Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
 End Sub

Remarks

This event can be used to update UI elements such as a property toolbox or status bar in your custom report
designer.

StatusChange
This event fires for each change in the status of the designer actions. Designer actions represent the
commands that are typically invoked from UI elements such as a toolbar or a menu. You can use the
QueryStatus method to check the status of the changed action and update your custom UI elements.

Syntax

object_StatusChange(action As DesignerActionTypes)

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.
ddLCSectionsAdd 8 - A section is added.

SelChange

StatusChange

AR2Pro | 45

The StatusChange event syntax has the following parts:

Settings

The settings for action are:

Part Description
action DesignerActionTypes - Specifies the action that caused the change as one of the actions listed

below.

Setting Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.
ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.

AR2Pro | 46

Example

'Update edit menu items on status change.
 Private Sub ARDesigner1_StatusChange(ByVal action As DDActiveReportsDesignerCtl.DesignerActionTypes)
 Select Case action
 Case ddActionECopy
 miECopy.Enabled = ((ARDesigner1.QueryStatus(ddActionECopy) And _
 ddStatEnabled) = ddStatEnabled)
 miECopy.Checked = ((ARDesigner1.QueryStatus(ddActionECopy) And _
 ddStatChecked) = ddStatChecked)
 End Select
End Sub

ValidateChange
This event is fired before an item is moved, sized or deleted. You can use this event to control the end user's
actions. For example, you can prevent the user from deleting the report's data control or moving a
predefined set of controls that are part of a standard report template.

Syntax

object_ValidateChange(control As Object, changeType As LayoutChangeTypes, Cancel As Boolean)

Parameters

The ValidateChange event syntax has the following parts:

Settings

The settings for changeType are:

ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline

ValidateChange

Part Description
object An expression evaluating to an object of type ARDesigner.
control Object
changeType LayoutChangeTypes
Cancel Boolean

Setting Description
ddLCControlMove 0 - A control's position has changed.
ddLCControlSize 1 - A control's size has changed.
ddLCControlDelete 2 - A control is deleted.
ddLCSectionSize 3 - A section's size has changed.
ddLCSectionDelete 4 - A section is deleted.
ddLCSectionMove 5 - A section is moved.
ddLCReportSize 6 - The report's size is changed.
ddLCControlAdd 7 - A new control is added to the report.

AR2Pro | 47

Example

Private Sub ARDesigner1_ValidateChange(ByVal control As Object, _
 ByVal changeType As DDActiveReportsDesignerCtl.LayoutChangeTypes, _
 Cancel As Boolean)
 If changeType = ddLCControlDelete Then
 If control.Name = "DataControl1" Then
 MsgBox "You cannot delete the reports data source."
 Cancel = True
 End If
 End If
 End Sub

Selection Methods

Count
Returns the number of selected objects in the collection.

Syntax

object.Count()

Example

'SelChange event handler
Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
End Sub

Item
Returns the selection item at the specified index.

Syntax

object.Item((index As Long))

The Item method syntax has the following parts:

Selection Methods

Name Type Description
Count Method Returns the number of selection objects in the collection.

object.Count
Item Method Returns the object at the selected index.

object.Item(index)

Count

Item

Part Description

AR2Pro | 48

Example

'SelChange event handler
Private Sub ARDesigner1_SelChange()
 If ARDesigner1.SelectedObjects.Count = 1 Then
 StatusBar1.Panels(1).Text = ARDesigner1.SelectedObjects.Item(0).Name
 Else
 StatusBar1.Panels(1).Text = ""
 End If
End Sub

WebCache Service Objects
WebCache

WebCacheItem

WebCacheWorkerThread

WebCacheWorkerThreads

WebCache

CacheContent
Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection. The
CacheItem Method should only be used when additional header information other than content type needs to
be written into the header of the cached item.

Syntax

object.CacheContent(ContentType As String, Data As Variant)

The CacheContent method syntax has the following parts:

object An expression evaluating to an object of type Selection.
index Long

WebCache Service

WebCache

Name Type Description
CacheContent Method Adds an item to the WebCache collection.
CacheItem Method Adds an item to the WebCache collection.
IsCached Method Determines whether a specific item is cached.
Item Method Returns the cached item at the specified index.
Remove Method Removes the cached item at the specified index.
RemoveAll Method Removes all cached items from the service.
Count Property Returns the number of cached items in the service.

CacheContent

AR2Pro | 49

Example

'The following example performs the following
'1)Loads an ActiveReport from a presaved XML file
'2)Runs the report
'3)Exports the report to a byte array in PDF format
'4)Adds the byte array to ActiveReports WebCache so
'that it may be streamed directly to the browser
'The example code is placed in a user-defined function.
'A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.
'You could then do an ASP response.redirect to the
'url where the pdf export was cached.
Public Function ExportReport() as long

 Dim rpt As ActiveReport
 Dim aWebCache As WebCache
 Dim pdfExpt As ActiveReportsPDFExport.ARExportPDF
 Dim PDFByteArray As Variant

 Set rpt = New ActiveReport
 Set aWebCache = New WebCache
 Set pdfExpt = New ActiveReportsPDFExport.ARExportPDF

 rpt.Load "c:\testing.rpx"

 rpt.run

 Call pdfExpt.ExportStream(rpt.Pages, PDFByteArray)

 lWebCacheID = aWebCache.CacheContent("Application/PDF", PDFByteArray)

 ExportReport = lWebCacheID 'lWebCacheID can now be used to access the cached pdf file
 'ASP Code calling the above function
 Dim vWebCacheID
 'vWebCacheID = arptserver.ExportReport()
 'Response.Redirect "mywebsite/webcache.dll?" & vWebCacheID & "?"
End Function

CacheItem
Adds an item to the WebCache collection.

Note: CacheContent is the most commonly used method to add items to the WebCache collection. The
CacheItem Method should only be used when additional header information other than content type needs to
be written into the header of the cached item.

Syntax

object.CacheItem(Header As String, Data As Variant)

The CacheItem method syntax has the following parts:

Part Description
object An expression evaluating to an object of type WebCache.
ContentType String
Data Variant

CacheItem

Part Description
object An expression evaluating to an object of type WebCache.
Header String - A valid header string to send to the browser client.
Data Variant - cache content.

AR2Pro | 50

Example

'The following example performs the following
'1)Loads an ActiveReport from a presaved XML file
'2)Runs the report
'3)Exports the report to a byte array in PDF format
'4)Adds the byte array to ActiveReports WebCache so
'that it may be streamed directly to the browser
'The example code is placed in a user-defined function.
'A typical scenario would be for this function to be placed
'in a COM object and called from an ASP page.
'You could then do an ASP response.redirect to the
'url where the pdf export was cached.
Public Function ExportReport() as long

 Dim rpt As ActiveReport
 Dim aWebCache As WebCache
 Dim pdfExpt As ActiveReportsPDFExport.ARExportPDF
 Dim PDFByteArray As Variant

 Set rpt = New ActiveReport
 Set aWebCache = New WebCache
 Set pdfExpt = New ActiveReportsPDFExport.ARExportPDF

 rpt.Load "c:\testing.rpx"

 rpt.run

 Call pdfExpt.ExportStream(rpt.Pages, PDFByteArray)

 lWebCacheID = aWebCache.CacheContent("Application/PDF", PDFByteArray)

 ExportReport = lWebCacheID 'lWebCacheID can now be used to access the cached pdf file
 'ASP Code calling the above function
 Dim vWebCacheID
 'vWebCacheID = arptserver.ExportReport()
 'Response.Redirect "mywebsite/webcache.dll?" & vWebCacheID & "?"
End Function

IsCached
Returns a Boolean value telling the developer if a specific item is still cached or not.

Syntax

object.IsCached(Id As String)

The IsCached method syntax has the following parts:

Example

'Checking to see if a webcache id is still cached
 Dim blnIsCached As Boolean
 Dim aWebCache As WebCache

Set aWebCache = New WebCache
blnIsCached=aWebCache.IsCached("1")

IsCached

Part Description
object An expression evaluating to an object of type WebCache.
Id String

AR2Pro | 51

Item
Allows random access to individual nodes within the WebCache collection.

Syntax

object.Item((Index As Variant))

The Item method syntax has the following parts:

Example

'The example code demonstrates how to loop
 'through all of the items in the
 'webcache collection and
'print out each items timeout value
'Please Note that For EACH is not used in the example.
 'The _NewEnum property of the webcache collection
'is not supported at this time so you cannot use For Each.

Dim x As Integer
For x = 0 To aWebCache.Count - 1
 Debug.Print "awebcache.item(" & x & ").timeout = " & aWebCache.Item(x).TimeOut
Next

Remove
Removes an element from the WebCache collection using the index of the cached item.

Syntax

object.Remove(Index As Variant)

The Remove method syntax has the following parts:

Example

'In this example aWebCache represents a declared instance of the webcache class
'containing cached items

'removes the first cached item in the webcache collection

aWebCache.remove(0)

RemoveAll
Removes all cached items from the WebCache Collection.

Item

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant

Remove

Part Description
object An expression evaluating to an object of type WebCache.
Index Variant

RemoveAll

AR2Pro | 52

Syntax

object.RemoveAll()

The RemoveAll method syntax has the following parts:

Example

'In this example aWebCache represents a declared instance of the webcache class
'containing cached items

'removes all cached item in the webcache collection

aWebCache.removeall

Count
Returns the current number of Cached Items in the WebCache Collection - Read Only.

Syntax

[value=]object.Count

The Count property syntax has the following parts:

Data Type

Integer

Example

'In this example aWebCache represents a declared instance of the webcache class
'containing cached items
dim icount as integer
icount= aWebCache.count

WebCacheItem

Part Description
object An expression evaluating to an object of type WebCache.

Count

Part Description
object A valid WebCache object
value An Integer value.

WebCacheItem

Name Type Description
Data Property Returns the data of the cached item.
Header Property Returns the header of the cached item.
Id Property Returns the cached items Id that is used by the ISAPI filter.
Persistence Property Determines when the cached items will be destroyed.
Timeout Property Determines the time in minutes that a cached item will remain in the cache.

Data

AR2Pro | 53

Data
Returns the data of the cached item - Read Only.

Syntax

[value =]object.Data

The Data property syntax has the following parts:

Data Type

Variant

Example

'This example demonstrates how to use the
'Data property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)
debug.print aWebCacheItem.data

Header
Returns the header of the cached item - Read Only.

Syntax

[value =]object.Header

The Header property syntax has the following parts:

Data Type

String

Example

'This example demonstrates how to use the
'header property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

debug.print aWebCacheItem.header

Part Description
object A valid WebCacheItem object
value A Variant value.

Header

Part Description
object A valid WebCacheItem object
value A String value.

AR2Pro | 54

Id
Returns the cached items Id that is used by the ISAPI filter - Read Only.

Syntax

[value =]object.Id

The Id property syntax has the following parts:

Data Type

String

Example

'This example demonstrates how to use the
'Id property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

debug.print aWebCacheItem.Id

Persistence
Determines when the cached item will be destroyed - Read/Write.

Syntax

object.Persistence [= value]

The Persistence property syntax has the following parts:

Settings

The settings for value are:

Data Type

Id

Part Description
object A valid WebCacheItem object
value A String value.

Persistence

Part Description
object A valid WebCacheItem object
value A PersistenceTypes value.

Setting Description
ddPermanent 1 - Cached item will stay alive forever. The item has to be destroyed using an explicit

WebCache.Remove call.
ddTimeout 2 - Cached item will remain in the cache for a time period specified by the end user via

the WebCacheItem's Timeout property. A possible usage scenario is setting the
Timeout property to the SessionTimeout value under IIS.

ddAccessedOnce 3 - Cached item is destroyed immediately after the client accesses the data one time

AR2Pro | 55

PersistenceTypes

Example

'This example demonstrates how to use the
'Persistence property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem

Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

aWebCacheItem.Persistence = 2

Remarks

Default value = ddAccessedOnce

TimeOut
Determines the time in minutes that a cached item will remain in the cache - Read/Write.

Note: The Timeout property is only used if the persistence property of the WebCacheItem is set to 2 -
ddTimeout.

Syntax

object.TimeOut [= value]

The TimeOut property syntax has the following parts:

Data Type

Long

Example

'This example demonstrates how to use the
'Timeout property of the WebCachItem class.
'In the example "aWebCache" is a pre-existing
'variable dimensioned as webcache and it
'has been populated with a webcacheitem
Dim aWebCacheItem As New WebCacheItem
Set aWebCacheItem = aWebCache.Item(0)

aWebCacheItem.Timeout = 2

Remarks

Default value = 0

WebCacheWorkerThread

TimeOut

Part Description
object A valid WebCacheItem object
value Long value.

WebCacheWorkerThread

Name Type Description
AveragePerRequest Property Returns the average number of milliseconds per request.

AR2Pro | 56

TotalTimeServicingRequest
Returns the total time used servicing a request in milliseconds. The time waiting for a request is not included
- Read Only.

Syntax

[value=] object.TotalTimeServicingRequest

The TotalTimeServicingRequest property syntax has the following parts:

Data Type

Long

Example

Dim numThreads As New WebCacheWorkerThreads
Dim aThread As New WebCacheWorkerThread

Set aThread = numThreads.Item(0)

Debug.Print aThread.ThreadID
Debug.Print aThread.TotalTimeServicingRequest

ThreadId
Returns the id of the WebCacheWorkerThread - Read Only.

Syntax

[value=] object.ThreadId

The ThreadId property syntax has the following parts:

Data Type

Integer

Example

'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.

Dim aItem As ListItem

NumberOfRequest Property Returns the number of requests that the thread has serviced.
ThreadId Property Returns the id of the WebCacheWorkerThread.
TotalTimeServicingRequest Property Returns the total time used servicing a request in milliseconds.

TotalTimeServicingRequest

Part Description
object A valid WebCacheWorkerThread object
value A Long value.

ThreadId

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

AR2Pro | 57

Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

NumberOfRequest
Returns the number of requests that the thread has serviced - Read Only.

Syntax

[value=] object.NumberOfRequest

The NumberOfRequest property syntax has the following parts:

Data Type

Long

Example

'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.

Dim aItem As ListItem
Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

AveragePerRequest
Returns the average number of milliseconds per request - Read Only.

Syntax

NumberOfRequest

Part Description
object A valid WebCacheWorkerThread object
value A Long value.

AveragePerRequest

AR2Pro | 58

[value=] object.AveragePerRequest

The AveragePerRequest property syntax has the following parts:

Data Type

Integer

Example

'This example prints out several properties
'for all of the workerthreads in the workerthreads
'collection. The sample adds the following properties to a
'standard vb listView control called lstThreads.
'ThreadId,AveragePerRequest,and NumberofRequest.

Dim aItem As ListItem
Dim aThread As WebCacheWorkerThread
Dim aThreads As New WebCacheWorkerThreads
Dim nSize As Integer
Dim nIndex As Integer

nSize = aThreads.Count

For nIndex = 0 To nSize - 1
 Set aThread = aThreads.Item(nIndex)
 Set aItem = lstThreads.ListItems.Add(, , CStr(aThread.ThreadID))
 aItem.SubItems(1) = CStr(aThread.AveragePerRequest)
 aItem.SubItems(2) = CStr(aThread.NumberOfRequest)
Next nIndex

WebCacheWorkerThreads

Count
Returns the current number of WebCacheWorkerThreads.

Syntax

[value=] object.count

The Count property syntax has the following parts:

Data Type

Part Description
object A valid WebCacheWorkerThread object
value An Integer value.

WebCacheWorkerThreads

Name Type Description
Item Method Returns the Thread object at the specified index.
Count Property Returns the number of WebCacheWorkerThreads in the collection.

Count

Part Description
object A valid WebCacheWorkerThreads object
value An Integer value.

AR2Pro | 59

Integer

Example

Dim numThreads As WebCacheWorkerThreads
Set numThreads = New WebCacheWorkerThreads

Debug.Print "workerthread count = " & numThreads.Count

Item
Allows random access to individual nodes within the WebCacheWorkerThreads collection.

Syntax

object.Item((Index As Variant))

The Item method syntax has the following parts:

Example

Dim numThreads As New WebCacheWorkerThreads
Dim aThread as New WebCacheWorkerThread

Set aThread = numThreads.Item(0)

Debug.Print aThread.Id

Property List Objects
PropList Control Object

PropNode Object

PropNodes Collection

PropList

Item

Part Description
object An expression evaluating to an object of type WebCacheWorkerThreads.
Index Variant

Property List Control

PropList Control

Name Type Description
AllowColumnResize Property Specifies whether the user is allowed to resize the property list

columns.
Backcolor Property Specifies the background color of the property list control.
BorderStyle Property Specifies the border style of the control.
Categorized Property Sets/returns if property list nodes are categorized or alphabetical.
Enabled Property Determines whether the property list control is enabled or disabled.
Font Property Specifies the font used to render text in the property list control.
ForeColor Property Specifies the foreground color of the property list.
hWnd Property Returns the property list window handle.
Properties Property Returns property nodes collection.

AR2Pro | 60

Sorted
Determines whether the properties are sorted alphabetically in the list.

Syntax

object.Sorted [= value]

The Sorted property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

ShowToolbar
Sets/returns if toolbar is visible.

Syntax

object.ShowToolbar [= value]

ShowDescription Property Sets/returns if property description pane is visible.
ShowObjectCombobox Property Sets/returns if object combobox is visible.
ShowReadOnlyProp Property Sets/returns weather readonly properties are shown.
ShowToolbar Property Sets/returns if toolbar is visible.
Sorted Property Determines whether the properties are sorted alphabetically in the

list.

AddObject Method
Adds an object reference to the property listbox and updates the
combobox list.

Clear Method Removes all nodes from the property list.
Refresh Method Updates the propertylistbox with new values.
SelectObjects Method Sets the current selection. object can be a single COM object or an

array of COM objects.
ButtonClick Event Fires when a button on ddPLButton property is clicked.
Error Event Fires when an internal error occurs in the property list control.
FetchData Event Fires when enum combobox dropdown is pressed.
FetchDataDescription Event Fires when combobox is updating its text or listbox.
ObjectChanged Event Fired when user selected a new object from the object combobox
PropertyChanged Event Fires when property value has been changed
PropertyValidate Event Fired before a value is stored in the property node when user makes

a change to the value

Sorted

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Properties are sorted alphabetically.
False Properties are listed in the order they were added.

ShowToolbar

AR2Pro | 61

The ShowToolbar property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default

ShowReadOnlyProp
Sets/returns weather readonly properties are shown.

Syntax

object.ShowReadOnlyProp [= value]

The ShowReadOnlyProp property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

ShowObjectCombobox
Sets/returns if object combobox is visible.

Syntax

object.ShowObjectCombobox [= value]

The ShowObjectCombobox property syntax has the following parts:

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Displays the toolbar.
False Hides the toolbar.

ShowReadOnlyProp

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Displays the readonly properties.
False Hides the readonly properties.

ShowObjectCombobox

AR2Pro | 62

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

ShowDescription
Sets/returns if property description pane is visible.

Syntax

object.ShowDescription [= value]

The ShowDescription property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

Properties
Returns property nodes collection.

Syntax

Set value = object.Properties

The Properties property syntax has the following parts:

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Displays the objects combobox.
False Hides the objects combobox.

ShowDescription

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Description pane is visible.
False Description pane is not visible.

Properties

AR2Pro | 63

Data Type

IPropNodes

hWnd
Returns the property list window handle.

Syntax

value = object.hWnd

The hWnd property syntax has the following parts:

Data Type

OLE_HANDLE

ForeColor
Specifies the foreground color of the property list.

Syntax

object.ForeColor [= value]

The ForeColor property syntax has the following parts:

Data Type

OLE_COLOR

Remarks

Default value = vbWindowText

Font
Specifies the font used to render text in the property list control.

Syntax

object.Font [= value]

The Font property syntax has the following parts:

Part Description
object A valid object
value A valid PropNodes collection.

hWnd

Part Description
object A valid PropList object.
value Returns the property list window handle.

ForeColor

Part Description
object A valid PropList object.
value A valid OLE_COLOR value.

Font

AR2Pro | 64

Data Type

Font

Enabled
Determines whether the property list control is enabled or disabled.

Syntax

object.Enabled [= value]

The Enabled property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

Categorized
Sets/returns if property list nodes are categorized or alphabetical.

Syntax

object.Categorized [= value]

The Categorized property syntax has the following parts:

Settings

The settings for value are:

Part Description
object A valid PropList object
value A valid Font object.

Enabled

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Property list control is enabled.
False Property list control is disabled.

Categorized

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Property list nodes are categorized in a treeview.
False Property list nodes are listed alphabetically.

AR2Pro | 65

Data Type

Boolean

Remarks

Default value = True

BorderStyle
Specifies the border style of the control.

Syntax

object.BorderStyle [= value]

The BorderStyle property syntax has the following parts:

Settings

The settings for value are:

Data Type

ddPLBorderStyle

Remarks

Default value = ddPLSunken

BackColor
Specifies the background color of the property list control.

Syntax

object.BackColor [= value]

The BackColor property syntax has the following parts:

Data Type

OLE_COLOR

Remarks

Default value = vbWindowBackColor

BorderStyle

Part Description
object A valid PropList object
value A ddPLBorderStyle setting.

Setting Description
ddPLNone 0 - No border.
ddPLSunken 1 - Sunken border.

BackColor

Part Description
object A valid PropList object
value A valid color value.

AllowColumnResize

AR2Pro | 66

AllowColumnResize
Specifies whether the user is allowed to resize the property list columns.

Syntax

object.AllowColumnResize [= value]

The AllowColumnResize property syntax has the following parts:

Settings

The settings for value are:

Data Type

Boolean

Remarks

Default value = True

SelectObjects
Sets the current selection. object can be a single COM object or an array of COM objects.

Syntax

object_SelectObjects(selObject As Variant)

The SelectObjects method syntax has the following parts:

Example

' Select a single object to the property list
plist.SelectObjects Text1

'Select multiple objects (property list would
'aggregate common properties).
plist.SelectObjects Array(Text1, Text2, Text3)

Refresh
Updates the propertylistbox with new values.

Syntax

Part Description
object A valid PropList object
value A Boolean value.

Setting Description
True Allows user to resize the property list columns.
False Does not allow the user to size the columns.

SelectObjects

Part Description
object An expression evaluating to an object of type PropList.
selObject Variant - a single object or an array of objects.

Refresh

AR2Pro | 67

object_Refresh()

The Refresh method syntax has the following parts:

Clear
Removes all nodes from the property list.

Syntax

object_Clear()

The Clear method syntax has the following parts:

AddObject
Adds an object reference to the property listbox and updates the combobox list.

Syntax

object_AddObject(newObject As Object)

The AddObject method syntax has the following parts:

Example

'Add an object to the property list
plist.AddObject Text1
plist.AddObject Text2

PropertyValidate
Fired before a value is stored in the property node when user makes a change to the value. Used to validate
an entry.

Syntax

object_PropertyValidate((property As IPropNode, newValue As Variant, Cancel As Boolean))

The PropertyValidate event syntax has the following parts:

Part Description
object An expression evaluating to an object of type PropList.

Clear

Part Description
object An expression evaluating to an object of type PropList.

AddObject

Part Description
object An expression evaluating to an object of type PropList.
newObject Object

PropertyValidate

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the current property.
newValue Variant - new property value.
Cancel Boolean - by ref parameter, allows you to cancel the change.

AR2Pro | 68

ObjectChanged
Fired when user selected a new object from the object combobox.

Syntax

object_ObjectChanged((newObject As Object))

The ObjectChanged event syntax has the following parts:

PropertyChanged
Fires when property value has been changed.

Syntax

object_PropertyChanged((property As IPropNode))

The PropertyChanged event syntax has the following parts:

FetchDataDescription
Fires when comobox is updating its text or listbox. You can use this event to provide alternate description
string for each enum value.

Syntax

object _FetchDataDescription((property As IPropNode, Value As Variant, Description As Variant))

The FetchDataDescription event syntax has the following parts:

Example

' This example modifies the descriptions of all boolean properties to German
Private Sub PropList1_FetchDataDescription(ByVal property As DDPropertyListCtl.IPropNode, _
 ByVal Value As Variant, Description As Variant)
 If property.Type = ddPLBoolean Then
 If (Value = True) Then
 Description = "Ja"
 Else
 Description = "Nein"
 End If
 End If

ObjectChanged

Part Description
object An expression evaluating to an object of type PropList.
newObject Object - a reference to the new selected object.

PropertyChanged

Part Description
object An expression evaluating to an object of type PropList.
property PropNode - a reference to the changed property nodes.

FetchDataDescription

Part Description
object An expression evaluating to an object of type PropList.
property PropNode
Value Variant
Description Variant

AR2Pro | 69

End Sub

FetchData
Fires when enum combobox dropdown is pressed. You can change the items in the combobox by using
node.ClearEnums and node.AddEnum methods.

Syntax

object_FetchData((property As IPropNode))

The FetchData event syntax has the following parts:

Example

Private Sub pl_FetchData (ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

Error
Fires when an internal error occurs in the property list control.

Syntax

object_Error((Number As Integer, Description As ReturnString, Scode As Long,
Source As String, HelpFile As String, HelpContext As Long, CancelDisplay As ReturnBool))

The Error event syntax has the following parts:

Example

' Handle PropertyList errors
Private Sub PropertyList1_Error(Number As Integer, Description As ReturnString,
 SCode As Long, Source As String, HelpFile As String, HelpContext As Long,
 CancelDisplay As Boolean)

FetchData

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode

Error

Part Description
object An expression evaluating to an object of type PropList.
Number Integer - Error number.
Description ReturnString - Brief description of the error.
Scode Long - Result code.
Source String - Error source.
HelpFile String - Help file.
HelpContext Long - Help context id.
CancelDisplay ReturnBool - Boolean variable, used to suspend the built-in error message box.

AR2Pro | 70

 'Display the error number and description to a form's status bar instead
 'of an error message box
 statusbar1.Panels(1).Text = "Error: " & Str(Number) & " - " & Description
 CancelDisplay = True
End Sub

ButtonClick
Fires when a button on ddPLButton property is clicked.

Syntax

object_ButtonClick(property As IPropNode)

The ButtonClick event syntax has the following parts:

Example

'Handle the border property with a custom dialog
Private Sub PropertyList1_ButtonClick(property as IPropNode)
 If property.Name = "Border" Then
 frmBorders.Show vbModal
 End If
End Sub

PropNode

AddEnum
Adds a new enumeration value to the property.

Syntax

object.AddEnum(Value As Variant, Description As Variant)

The AddEnum method syntax has the following parts:

ButtonClick

Part Description
object An expression evaluating to an object of type PropList.
property IPropNode

PropNode Object

Name Type Description
AddEnum Method Adds a new enumeration value to the property
ClearEnums Method Clear all enumeration values for property
Category Property Sets/returns optional property category name.
Children Property Returns child property collection.
Description Property Sets/returns description for property.
Name Property Sets/returns property name.
Type Property Sets/returns UI type for property.
Value Property Sets/returns value of property

AddEnum

Part Description

AR2Pro | 71

Example

Private Sub pl_FetchData(ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

ClearEnums
Clear all enumeration values for property.

Syntax

object.ClearEnums()

The ClearEnums method syntax has the following parts:

Example

Private Sub pl_FetchData(ByVal property As DDPropertyListCtl.IPropNode)
 Select Case property.Name
 Case "State"
 property.ClearEnums
 property.AddEnum "AL", "Alabama"
 property.AddEnum "CA", "California"
 property.AddEnum "OH", "Ohio"
 property.AddEnum "NC", "North Carolina"
 End Select
End Sub

Category
Sets/returns optional property category name.

Syntax

object.Category [= value]

The Category property syntax has the following parts:

Data Type

String

object An expression evaluating to an object of type PropNode.
Value Variant - value of the enum.
Description Variant - description of the enum.

ClearEnums

Part Description
object An expression evaluating to an object of type PropNode.

Category

Part Description
object A valid PropNode object
value A String value.

AR2Pro | 72

Children
Returns child property collection.

Syntax

object.Children [= value]

The Children property syntax has the following parts:

Data Type

IPropNodes

Example

'Create a complex property Address with child nodes.
Set nod = New PropNode
nod.Category = "Address"
nod.Name = "Telephone"
nod.Type = ddPLLabel
Set subNod = New PropNode
subNod.Category = "Address"
subNod.Name = "Home"
subNod.Type = ddPLString
nod.Children.Add subNod
Set subNod = New PropNode
subNod.Category = "Address"
subNod.Name = "Business"
subNod.Type = ddPLString
nod.Children.Add subNod
pl.Properties.Add nod

Description
Sets/returns description for property.

Syntax

object.Description [= value]

The Description property syntax has the following parts:

Data Type

String

Name

Children

Part Description
object A valid PropNode object
value A PropNodes Collection.

Description

Part Description
object A valid PropNode object
value A String value.

Name

AR2Pro | 73

Sets/returns property name.

Syntax

object.Name [= value]

Values

The Name property syntax has the following parts:

Data Type

String

Type
Sets/returns UI type for property.

Syntax

object.Type [= value]

The Type property syntax has the following parts:

Settings

The settings for value are:

Data Type

ddPLNodeType

Value

Part Description
object A valid PropNode object
value A String value.

Type

Part Description
object A valid PropNode object
value A ddPLNodeType setting.

Setting Description
ddPLString 0 -A string property.
ddPLLabel 1 - A static label.
ddPLEnum 2 - An enumerated property editor.
ddPLBoolean 3 - A Boolean property editor.
ddPLColor 4 - A color property editor.
ddPLStringCombo 5 - A string editor with a combobox.
ddPLPicture 6 - A picture property editor.
ddPLFont 7 - A font property editor.
ddPLButton 16 - Adds a custom button to the property editor, can be combined with any of the

other types.

Value

AR2Pro | 74

Sets/returns value of property. Call the refresh method to update the property listbox with the new value.

Syntax

object.Value [= value]

Values

The Value property syntax has the following parts:

Data Type

Variant

PropNodes

Remove
Removes a node from the collection at the specified index.

Syntax

object.Remove(Index As Variant)

The Remove method syntax has the following parts:

Item
Returns the property node object at the specified index.

Syntax

object.Item(Index As Variant)

The Item method syntax has the following parts:

Part Description
object A valid PropNode object
value A Variant value.

PropNodes Collection

Name Type Description
Add Method Adds the specified node object to the collection.
Count Method Returns the number of property nodes in the collection.
Item Method Returns the property node object at the specified index.
Remove Method Removes a node from the collection at the specified index

Remove

Part Description
object An expression evaluating to an object of type PropNodes.
Index Variant - Index of the node to be removed from the collection.

Item

Part Description
object An expression evaluating to an object of type PropNodes.

AR2Pro | 75

Count
Returns the number of property nodes in the collection.

Syntax

object.Count()

The Count method syntax has the following parts:

Add
Adds the specified node object to the collection.

Syntax

object.Add(property As PropNode)

The Add method syntax has the following parts:

Example

Set nod = New PropNode
nod.Category = "Address"
nod.Name = "State"
nod.Type = ddPLEnum
pl.Properties.Add nod

Index Variant

Count

Part Description
object An expression evaluating to an object of type PropNodes.

Add

Part Description
object An expression evaluating to an object of type PropNodes.
property PropNode object to be added.

AR2Pro | 76

	User Guide
	Overview
	Run-time Designer Control
	Introduction
	Using Run-time Designer Control
	Adding Run-time Designer to Visual Basic
	Adding Run-time Designer to your Project
	Working with the Designer at Run-time
	Saving and Loading Report Layouts
	Using the Designer Events
	Using Scripting
	Custom Toolbars and Menus
	Included Sample Projects
	Deployment and Distribution

	WebCache Service and ISAPI DLL
	Introduction
	Installation
	Deployment
	Using the WebCache Service

	Developers Reference
	ActiveReports Run-time Designer
	ARDesigner
	Properties
	GridSnap
	GridVisible
	GridX
	GridY
	IsDirty
	Locked
	Report
	RulerUnits
	SelectedObjects
	ToolbarsAccessible
	ToolbarsVisible
	ToolboxItem

	Methods
	ExecuteAction
	GetSectionFromPoint
	LoadFromObject
	NewLayout
	QueryStatus
	SaveToObject

	Events
	Alert
	ContextMenuOpen
	Error
	LayoutChanged
	SelChange
	StatusChange
	ValidateChange

	Selection Methods
	Count
	Item

	WebCache Service
	WebCache
	CacheContent
	CacheItem
	IsCached
	Item
	Remove
	RemoveAll
	Count

	WebCacheItem
	Data
	Header
	Id
	Persistence
	TimeOut

	WebCacheWorkerThread
	TotalTimeServicingRequest
	ThreadId
	NumberOfRequest
	AveragePerRequest

	WebCacheWorkerThreads
	Count
	Item

	Property List Control
	PropList Control
	Sorted
	ShowToolbar
	ShowReadOnlyProp
	ShowObjectCombobox
	ShowDescription
	Properties
	hWnd
	ForeColor
	Font
	Enabled
	Categorized
	BorderStyle
	BackColor
	AllowColumnResize
	SelectObjects
	Refresh
	Clear
	AddObject
	PropertyValidate
	ObjectChanged
	PropertyChanged
	FetchDataDescription
	FetchData
	Error
	ButtonClick

	PropNode Object
	AddEnum
	ClearEnums
	Category
	Children
	Description
	Name
	Type
	Value

	PropNodes Collection
	Remove
	Item
	Count
	Add

